
1

A Study of Bug Management Using the
Stack Exchange Question and Answering

Platform
Aaditya Bhatia, Shaowei Wang, Muhammad Asaduzzaman, and Ahmed E. Hassan

Abstract—Traditional bug management systems, like Bugzilla, are widely used in open source and commercial projects.
Stack Exchange uses its online question and answer (Q&A) platform to collect and manage bugs, which brings several
new unique features that are not offered in traditional bug management systems. Users can edit bug reports, use different
communication channels, and vote on bug reports, answers, and their associated comments. Understanding how these
features manage bug reports can provide insights to the designers of traditional bug management systems, like whether a
feature should be introduced? and how would users leverage such a feature? We performed a large-scale analysis of
19,151 bug reports of the bug management system of Stack Exchange and studied the in-place editing, the answering and
commenting, and the voting features. We find that: 1) The three features are used actively. 2) 57% of the edits improved
the quality of bug reports. 3) Commenting provides a channel for discussing bug-related information, while answering
offers a channel for explaining the causes of a bug and bug-fix information. 4) Downvotes are made due to the
disagreement of the reported “bug” being a real bug and the low quality of bug reports. Based on our findings, we provide
suggestions for traditional bug management systems.

Index Terms—Bug management systems, Stack Exchange, Question & answer platform

F

1 INTRODUCTION

Collecting and managing bug reports is a crucial part of
software development due to the prevalence of bugs. As a
result, a number of traditional bug management systems are
commonly used in practice. For instance, Bugzilla1, which
is a popular online bug tracking system, is used by many
open source projects like Apache2, Linux3, as well as a
significant number of private organizations, such as IBM4.

In traditional bug management systems, bugs are re-
ported, discussed, and assigned to developers for fixing.
However, there are several challenges associated with bug
management [20]. For instance, in traditional bug man-

● Aaditya Bhatia, Muhammad Asaduzzaman and Ahmed E. Hassan
are with Software Analysis and Intelligence Lab (SAIL), School of
Computing, Queen’s University, Canada.
E-mail: {aaditya.bhatia, muhammad.asaduzzaman,
ahmed}@cs.queensu.ca

● Shaowei Wang is with the Department of Computer Science, Uni-
versity of Manitoba, Canada.
E-mail: shaowei@cs.umanitoba.ca

● Shaowei Wang is the corresponding author

1. https://www.bugzilla.org/
2. https://bz.apache.org/bugzilla/
3. https://bugzilla.kernel.org/
4. https://www.ibm.com/developerworks/library/l-bugzilla/index.

html

agement systems, like Bugzilla, changes to a bug report
from the community (e.g., adding new information, making
clarifications, and editing incorrect information) are usually
made through sequential commenting, which can lead to
very long comment threads. Finding useful information in
such a long comment thread is a challenging task [2].

Unlike traditional bug management systems, the bug
management process of Stack Exchange is performed on
its Q&A platform, namely, Meta Stack Exchange5. The
use of its platform for bug management results in several
unique aspects in the bug management process. For ex-
ample, Stack Exchange allows users to edit a bug report
instead of performing sequential commenting (i.e., in-place
editing feature). It also allows users to discuss bugs through
two different communication channels, namely, comments
and answers (i.e., answering and commenting features).
Therefore, it is important to study how such unique features
are used in Stack Exchange in the form of Q&A style.
Understanding the use of such features can provide insights
to the designers of traditional bug management systems,
like Bugzilla, who might wish to integrate such features
into their systems.

In this study, we performed a large-scale analysis of the
bug management system of Stack Exchange by studying

5. https://meta.stackexchange.com/

https://www.bugzilla.org/
https://bz.apache.org/bugzilla/
https://bugzilla.kernel.org/
https://www.ibm.com/developerworks/library/l-bugzilla/index.html
https://www.ibm.com/developerworks/library/l-bugzilla/index.html
https://meta.stackexchange.com/

19,151 bug reports, including 15,904 answers, 42,050 edits,
68,207 comments on bug reports, and 28,785 comments
on answers. We studied three unique features, namely, the
in-place editing feature, the answering and commenting
features, and the voting feature. We structure our study
along the following three research questions:
● RQ1: Does the in-place editing feature help improve

the quality of bug reports on the Stack Exchange
bug management system?
The in-place editing feature is used steadily over the
years. In addition, 57% of the in-place edits improved
the quality of bug reports, such as adding or correct-
ing essential bug-related information (e.g., observed
behavior and environment information). The ability
to rollback edits provides a mechanism to resolve
errors that arise during the in-place editing, which is
not possible in the sequential commenting thread of
traditional bug management systems.

● RQ2: How do users leverage the answering and
commenting features of the Stack Exchange bug
management system?
In general, commenting is used on 76% of the bug
reports, while answering is used on 60% of the bug re-
ports. The usages of commenting and answering differ
from each other. Commenting provides a channel for
discussing bug-related information, whereas answering
provides a channel for including the causes of a bug
and bug-fix information.

● RQ3: How do users leverage the voting feature of
the Stack Exchange bug management system?
Upvoting is used more frequently on bug reports and
answers than comments. The use of downvoting has
increased gradually over the years, with more down-
votes on bug reports than on their associated answers.
Most of the downvotes on bug reports are made due to
disagreement about whether the reported “bug” is a real
bug and the low quality of bug reports (i.e., reported
bugs are incorrect, insignificant, incomplete and non-
reproducible).

Based on our findings, we provide insights to the de-
signers of the traditional bug management systems, like
Bugzilla, who might wish to add these features into their
systems. For instance, we suggest that traditional bug man-
agement systems should consider introducing the in-place
editing feature. Traditional bug management systems also
should consider introducing the answering and commenting
features to encourage its users to better structure their
contribution. Separating the content into different channels
can help to find the target information more easily.

Section 2 explains the bug reporting process using the
Stack Exchange Q&A platform and its unique features (e.g.,
the in-place editing feature). While Section 3 discusses our
research questions and our data collection process. Section 4
presents the motivation, approach, findings of our three

research questions. Section 5 discusses the implications of
our findings and Section 6 describes threats to the validity of
our observations. We discuss the related work in Section 7.
Finally, Section 8 concludes our paper.

2 BACKGROUND

Stack Exchange6 is a network of 173 websites, which
provides a Q&A platform for its users to share knowledge
across various domains (e.g., programming, statistics, and
mathematics). One unique feature of the network is that
it uses one of its Q&A website, Meta Stack Exchange7,
to manage its bugs. In this section, we introduce the bug
management on Stack Exchange along the following two
aspects: bug reporting at Stack Exchange, and community
contributions to those bug reports. In the latter part, we
describe how community users edit, answer, comment, and
vote on bug reports. We summarize the differences between
bug reports on Stack exchange and those on three traditional
bug management systems (see table 2).

2.1 Bug Reporting at Stack Exchange
Users are encouraged to report bugs about all the Stack
Exchange Q&A websites on the Meta Stack Exchange.
Bug reports are treated as a regular question in the Meta
Stack Exchange, and are managed through the same Q&A
platform. All bug reports are labeled with the “bug” tag.
Thus, we consider all questions with the “bug” tag as bug
reports for our study. From here onwards, we refer a Meta
Stack Exchange question with the tag “bug” as a bug report
if not otherwise mentioned.

Stack Exchange expects its users to provide a title, body,
and tags for each reported bug. There is a limit of 150 and
30,000 characters for the title and the body of a bug report,
respectively. The title briefly describes the reported bug and
the body provides a detailed description of the bug. Besides
the tag “bug”, users are also encouraged to label a bug report
with other tags to better organize the bugs. All bug reports
are open to the whole community to view, edit, vote on,
leave comments, and provide answers. Figure 1 shows an
example of a bug report. The bug is about an issue of tag
display. Besides being tagged with “bug”, the bug report is
also tagged with “stackapps”, indicating that the questions
specific to stackapps.com are affected by the bug. The bug
report also includes the reporter information, enabling any
member of the community to visit the profile of the reporter.

On Stack Exchange, moderators are users with special
privileges. Such moderators maintain the website content
and guide other users in various community activities.
Moderators have the unique ability to change the status of

6. https://stackexchange.com/sites
7. https://meta.stackexchange.com/
8. https://meta.stackexchange.com/questions/280304/
9. https://meta.stackexchange.com/posts/280333

2

https://stackexchange.com/sites
https://meta.stackexchange.com/
https://meta.stackexchange.com/questions/280304/
https://meta.stackexchange.com/posts/280333

2/20/2020 Two 'script' tags on stackapps - Meta Stack Exchange

https://meta.stackexchange.com/questions/280304/two-script-tags-on-stackapps 1/2

Two 'script' tags on stackapps
 Asked 3 years, 8 months ago Active 3 years, 8 months ago 74 timesViewed

5

These posts , , in the page is showing with two tags.1 2 3 tampermonkey [script]

Originally it has [script] tag along with other tags.

 bug status-completed tags stackapps

edited Apr 13 '17 at 12:25

Community ♦
1

asked Jun 15 '16 at 20:38

Arulkumar
25.5k 5 34 115

1 – Repro'd, Chrome/Win X ArtOfCode Jun 15 '16 at 20:39

1 Answer

Bug Comment

Other Tags

Title of the Bug Report

Body of the Bug Report

Indicating a
Bug Report

Status Tag

Score

Bug Reporter

Fig. 1: An example of a reported bug on the Meta Stack
Exchange website 8.

Score

Answer Comment

Answer Body

Answerer

Accepted Answer

Fig. 2: An example of a developer’s response in the form
of an answer to the bug report shown in Figure 19. The
developer explained the cause of the bug and indicated that
the bug had been fixed.

a bug report to indicate its fixing status. There are seven
different “status” tags that can be applied to a bug report.
Table 1 presents a detailed description for each of these
“status” tags. For example, the status of the bug report, as
shown in Figure 1, is “status-completed”, indicating that the
bug has been fixed and the fix has been deployed.

2.2 Community Contributions to Bug Reports

The Stack Exchange community is encouraged to make
contributions to a bug report through the posting of answers
and comments on bug reports as well as their associated
answers. Users can perform the following actions to partic-
ipate in the management of bugs on Stack Exchange:

Status tag Description
status-completed The bug has been fixed and deployed.
status-declined The bug will not be fixed.

status-bydesign The bug report refers to a feature that is
misunderstood to be a bug.

status-norepo The site developers were not able to repli-
cate the reported bug.

status-deferred The bug is intended to be fixed, but not in
the near future.

status-planned The bug is intended to be fixed, ideally in
the near future.

status-review

The report contains merit to consider, but
requires further investigation. A decision on
its decline or approval requires additional
investigation.

status-
reproduced

Indicates that the site developers were able
to replicate the buggy behavior, but are not
yet addressing the cause at this time.

TABLE 1: Different categories of status tags and their
description.

In-place editing: Users can edit a bug report to fix
grammar and spelling mistakes; clarify the description of the
bug (without changing its original meaning); add additional
information (i.e., related links)10. We refer to the feature
which enables users to directly edit a bug report as the in-
place editing feature. In-place editing can be performed by
all users of the community. However, edits from users with
less than 2,000 reputation points must go through a review
process. The edit needs to be approved by the owner of the
bug report or moderators before being applied. For example,
Figure 3 shows the edit history of a bug report. A developer
edited the associated tags of the bug report, and performed
grammatical changes in the third edit.

Fig. 3: The edit history of a bug report11. Note that the first
version is the original bug report.

10. https://meta.stackexchange.com/help/editing
11. https://meta.stackexchange.com/posts/299290/revisions

3

https://meta.stackexchange.com/help/editing
https://meta.stackexchange.com/posts/299290/revisions

Characteristics Stack Exchange Bugzilla GitHub ITS12 Jira13

Voting
mechanism

1) Upvoting can be done on bug
reports, comments, and answers. 2)
Downvoting is only available on
bug reports and answers. No re-
strictions on upvoting.

1) Upvoting can only be
done on bug reports. De-
notes the community inter-
est in having that particular
bug resolved. 2) No mecha-
nism to show that users are
not interested in having a
bug resolved via downvotes.
3) The owner will be noti-
fied when her bug report is
upvoted.

Voting is not sup-
ported.

Only upvoting is
supported. However,
project administrators
need to enable voting
on issues as it is not
enabled by default.

Augmentation
of
information

It supports: 1) answering/ com-
menting on bug reports; 2)com-
menting on answers of bug reports.

It supports sequential com-
ments.

It supports sequential
comments.

It supports sequential
comments.

In-place
editing

1) It supports in-place editing and
shows the history of changes. 2) All
users can make or suggest changes.
3) In place editing can be done
for bug reports as well as their
answers.

1) It does not support
in-place editing. 2) Any
changes appear as a sequen-
tial comment.

1) Only the bug re-
porter can perform
in-place editing. 2)
Other users cannot
make or suggest any
changes.

1) It supports in-place
editing for only those
project members who
have edit permission.

Support for
tagging of
bug reports

Tagging is supported. Tagging is not supported. Tagging is supported. Tagging is not sup-
ported.

Severity It does not have a clear mechanism. It can be selected from a
configured levels of sever-
ity.

It does not have a
clear mechanism.

It can be selected
from a configured lev-
els of severity.

Priority It does not have a clear mechanism. It can be selected from a
configured levels of priority.

It does not have a
clear mechanism.

It can be selected
from a configured lev-
els of priority.

Closure of
the bug re-
port

1)‘status-completed’ tag is used to
indicate the closure of a bug re-
port. 2) The bug report can be
changed even after applying the
‘status-completed’ tag.

1) Issue thread is closed. 2)
No further changes can be
done to a bug report after its
closure.

1) Issue thread is
closed. 2) No further
changes can be done
to a bug report after
its closure.

1) Issue thread is
closed. 2) No further
changes can be done
to a,bug report after
its closure.

TABLE 2: Comparison between bug reports on Stack Exchange and those on three traditional bug management systems.

Some edits can be automatically performed by the
community user (i.e., a bot)14. Based on the description
on Stack Exchange, the community user is a background
process that automates some of the tasks of managing
websites. To understand what the bot edits, we manu-
ally analyzed 100 revisions that are performed by com-
munity bots. We observed that the examined edits were
performed for the following four reasons. First, edits were
performed to update the protocol part of URLs to access
Stack Exchange websites. For example, an edit by the
community user replaced http://meta.stackexchange.com
with https://meta.stackexchange.com15. The second group
of edits were performed to add duplicate links16. The
third group of edits fixed the links for those questions
that were migrated from Meta Stack Overflow to Meta
Stack Exchange17. The last group of edits updated URLs
when a website name was changed. For example, an

13. https://guides.github.com/features/issues/
13. https://www.atlassian.com/software/jira
14. https://meta.stackexchange.com/questions/19738/
15. https://meta.stackexchange.com/posts/37975/revisions
16. https://meta.stackexchange.com/posts/51141/revisions
17. https://meta.stackexchange.com/posts/37975/revisions

edit replaced http://programmers.stackexchange.com with
https://softwareengineering.stackexchange.com because of
the change in website name18. Such edits are performed
by the bot rather than users and they are not directly related
to the bug management on Stack Exchange. Therefore, we
excluded such edits from our study.

In a traditional bug management system, the original
bug report posted by a reporter usually cannot be edited
by the community directly. Any changes (e.g., adding new
information and correcting wrong information) to the bug
report is done through commenting, which can lead to a
bug report with a long list of comments, making it difficult
for developers to retrieve useful information from such a
long thread of comments [2]. In-place editing could be a
way to address this problem since in-place editing enables
the content to be located and polished in one place
(i.e., within a bug report). Therefore, in Section 4.1, we
investigate how the in-place editing feature is used in the
bug management system of Stack Exchange and provide
insights to traditional bug management systems who might
be considering integrating such a feature into their systems.

18. https://meta.stackexchange.com/posts/243554/revisions

4

https://guides.github.com/features/issues/
https://www.atlassian.com/software/jira
https://meta.stackexchange.com/questions/19738/
https://meta.stackexchange.com/posts/37975/revisions
https://meta.stackexchange.com/posts/51141/revisions
 https://meta.stackexchange.com/posts/37975/revisions
https://meta.stackexchange.com/posts/243554/revisions

Answering and Commenting: All users are allowed to
post answers to bug reports. Figure 2 shows an example of
an answer to a bug report. If the reporter is satisfied with an
answer that solves her/his question, then she/he can accept
the answer by clicking the check mark beside the answer. As
shown in Figure 2, the green tick indicates that the answer
is accepted by the reporter. Commenting is available for
both bug reports (i.e., referred to as a bug-comment) and
answers (i.e., referred to as an answer-comment). Unlike
answers, comments are only available to users who have
more than 50 reputation points. However, bug reporters and
answerers can comment on their own posts without such
a restriction. Users can only provide upvotes on comments
(in contrast to both upvotes and downvotes on bug reports
and their answers). The maximum limit of a comment is
600 characters19. We refer to a bug report, all its associated
answers, and their all associated comments as a bug thread.

Unlike traditional bug management systems, which only
allow sequential commenting, the Q&A platform enables its
users to contribute to the bug management process through
the “answering” of a bug report or through the “comment-
ing” on a bug report or its associated answers. This offers
two subtle differences: 1) users have different channels
to contribute to discussions about bugs (commenting or
answering), and the appropriate channel is not clear from
the Q&A oriented user interface (UI); 2) The ability to com-
ment on an answer (answer-comments) enables threaded
comments. These features are missing in current popular
bug management systems, such as Bugzilla. In Section 4.2,
we investigate how users leverage such commenting and
answering features.

Voting: Stack Exchange allows users to vote on bug
reports (i.e., bug-vote), answers (i.e., answer-vote), bug-
comments (i.e., bug-comment-vote), and answer-comments
(i.e., answer-comment-vote). Stack Overflow official doc-
umentation defines votes as follows: “votes reflect the
perceived usefulness: well-written, well-reasoned, well-
researched posts tend to get more attention and more up-
votes.”20 An upvote leads to a gain of reputation points for
the owner of the post (i.e., questions or answers), whereas
a downvote leads to a loss of reputation points for both
the owner of the post and the voter. The score of a post (a
bug report or an answer) is calculated as follows: number
of upvotes - number of downvotes, Unlike questions and
answers, comments can only be upvoted and such votes do
not lead to a gain or loss of reputation points. In Section 4.3,
we investigate how voting is used in a bug thread.

19. https://meta.stackexchange.com/questions/71283
20. https://stackoverflow.com/help/whats-meta

3 RESEARCH QUESTIONS & DATA COLLEC-
TION

3.1 Research Questions

Stack Exchange encourages the whole community to report
bug reports through the posting of questions. Unlike tradi-
tional bug management systems, Stack Exchange provides
three unique features (i.e., in-place editing, answering and
commenting, and voting) to encourage the community con-
tributions to bug management (e.g., reporting a bug). The
objective of our study is to investigate if these three unique
features available on Stack Exchange help the bug manage-
ment in terms of the quality of bug reports, the organization
of contribution under bug reports, and the received feedback
from the community. Therefore, we conduct our study to
answer the following three RQs:

● RQ1: Does the in-place editing feature help improve
the quality of bug reports on the Stack Exchange
bug management system?
Motivation: Ensuring the quality of bug reports is cru-
cial for bug fixing [7]. In traditional bug management
systems, like Bugzilla, the community is usually not al-
lowed to edit bug reports directly. Any changes to a bug
report in terms of adding new information, removing
irrelevant information, making clarifications, or edit-
ing incorrect information are made through sequential
commenting, leading to a long thread of comments for
each report. Unlike traditional bug management sys-
tems, Stack Exchange incorporates the in-place editing
feature in an effort to address the aforementioned
difficulties. In this RQ, we examine whether the in-
place editing feature helps improve the quality of bug
reports. For instance, what is the relationship between
bug-fixing time/rate and the number of in-place edits?
What is the rationale for such edits (e.g., adding bug-
related information or fixing grammatical mistakes)
and whether such edits can improve the quality of
bug reports? Answering this research question can
provide us with insights about the potential benefits
of traditional bug management systems supporting the
in-place editing feature.

● RQ2: How do users leverage the answering and
commenting features of the Stack Exchange bug
management system?
Motivation: In traditional bug management systems,
sequential commenting is the only medium for discus-
sions – such a single medium for discussions brings
challenges for organizing and retrieving the informa-
tion within such discussions [2]. In contrast, Stack Ex-
change allows the community to discuss and contribute
to a bug report through two different channels, namely,
commenting and answering. For example, Stack Ex-
change recommends users to submit a comment for
requesting clarification, or leaving constructive criti-

5

https://meta.stackexchange.com/questions/71283
https://stackoverflow.com/help/whats-meta

cism, while to submit a new answer for providing an
alternative solution. However, a prior study observes
that users do not always follow Stack Exchange’s
recommendations, e.g., users leverage comments and
answers alternatively [36]. The goal of this RQ is to
understand how answering and commenting features
are used by Stack Exchange users. For example, what
do users discuss in answers and comments? Do users
discuss different issues in answers versus comments?
The answer to this RQ can provide insights to the
designers of traditional bug management systems en-
abling them to make informed decisions on whether
to integrate such answering and commenting features
into their systems, e.g., introducing different channels
to better organize and structure the contributions to bug
reports.

● RQ3: How do users leverage the voting feature of
the Stack Exchange bug management system?
Motivation: Traditional bug management systems pro-
vide only limited support for voting (see Section 2).
For instance, in Bugzilla, votes can be given on bug
reports, indicating that users want those bugs to be
fixed. This is analogous to upvotes in the voting system
of Stack Exchange. However, there is no support for
downvotes in Bugzilla21. Moreover, the gamification
of the bug management system of Stack Exchange
ensures that such votes are integrated more widely
across the system (e.g., not just the report but also on
the contributions of other users, like answers and com-
ments). Furthermore, such Stack Exchange votes have
some intrinsic value. For example, one has a limited
number of downvotes to offer (since a user would lose
reputation points for each downvote), ensuring that one
would not downvote bug reports arbitrarily and would
put some deeper thought in their voting. In this RQ, we
aim to provide the designers of traditional bug manage-
ment systems an empirical understanding of how the
voting feature is used in the bug management system
of Stack Exchange, enabling them to decide if they
should consider integrating such a feature into their
systems. For example, we study how the voting feature,
typically downvoting (not offered in traditional bug
management systems), is used during the management
of a bug report.

3.2 Data Collection

This section discusses how we collect the dataset that we
used to answer our research questions.

For this study, we download a publicly available data
dump of Meta Stack Exchange from archive.org22. The data
dump contains all the site activities between June 28, 2009,

21. https://www.bugzilla.org/docs/4.4/en/html/voting.html
22. https://archive.org/download/stackexchange

and March 3, 2019. The data dump consists of a collection
of XML files containing information about questions, as-
sociated answers, post histories, post links, comments, and
votes.

A brief description of the data collection process is
summarized in Figure 4. To collect the bug reports, we
collected all questions with the tag “bug”. We then collected
the answers that are associated with those bug reports.
The comments that are attached to those questions (i.e.,
bug-comments) and answers (i.e., answer-comments) are
also collected using the Comments.xml file. Likewise, we
collected all the edits that were performed on those bug
reports by leveraging the PostHistory.xml file. We focus
only on those edits that were performed on the title, body,
and tags of bug reports, including those edits that were
rolled back. In addition, we collected all the votes that are
associated with those bug reports (i.e., bug-votes), answers
(i.e., answer-votes), and comments (i.e., bug-comment-votes
and answer-comment-votes). In total, we collected 19,151
bug reports with 15,904 associated answers for our analysis.
Table 3 gives an overview of our studied dataset.

We characterize our selected dataset on the following
three dimensions: a) the top-20 popular tags that are as-
sociated with bug reports other than the tag “bug” and
status tags; b) the number of users that are associated
with bug reports; c) the number of yearly submitted bug
reports. A median of three tags are associated with a bug
report (minimum is one and maximum is five). There are
a total of 931 tags that are associated with these bug
reports. A median of seven bug reports are associated with
a tag (minimum is one and maximum is 19,095). The
top-20 popular tags and the percentage of the bugs that
are associated with these tags are shown in Figure 5. To
determine the number of users participating in a bug thread,
we consider bug reporters, answerers, bug-commenters and
answer-commenters. A median of four users are associated
with a bug thread (minimum is one and maximum is 82).
The number of bug reports over years is shown in Figure 6.
The number increases from year 2009 to 2013 and drops
after that.

The dataset we used in this study including our re-
sults and scripts are publicly available at the follow-
ing link to support future replication: https://github.com/
SAILResearch/replication-18-Adi-bug management SO.

Data Count
Bug reports 19,151
Answers 15,904
Bug-comments 68,207
Answer-comments 28,785
Bug-votes 137,673
Answer-votes 77,734
Edits (Title, Body and Tag) 42,050
Bug-comment votes 59,605
Answer-comment votes 27,090

TABLE 3: Overview of the studied dataset.
6

https://www.bugzilla.org/docs/4.4/en/html/voting.html
https://archive.org/download/stackexchange
https://github.com/SAILResearch/replication-18-Adi-bug_management_SO
https://github.com/SAILResearch/replication-18-Adi-bug_management_SO

Extract Data
Dump

Meta Stack Exchange

Posts.xml

Votes.xml

Comments.xml

RQ1
PostsHistory.xml

Bug Report EditsRetrieve Edits

Retrieve Answer
and Comments RQ2 Answers &

Comments

Retrieve Votes RQ3
Votes on Bug

Reports, Answers &
Comments

Retrieve Bug
Reports &
Answers

Bugs &
 Answers

Fig. 4: An overview of the data collection process.

9.64

6.26

5.25

4.634.634.52
4.144.033.923.693.49

2.762.762.682.632.532.522.442.372.34

0.0

2.5

5.0

7.5

10.0

de
si

gn

an
dr

oi
d−

ap
p

ch
at

ca
re

er
s

co
m

m
en

ts

pr
of

ile
−

pa
ge

io
s−

ap
p

re
vi

ew

su
pp

or
t

re
pu

ta
tio

n

ta
gs

m
ar

kd
ow

n

m
ob

ile
−

w
eb

se
ar

ch

su
gg

es
te

d−
ed

its

ba
dg

es

ed
its

hy
pe

rli
nk

s

ar
ea

51

us
er

−
in

te
rf

ac
e

Tags

P
er

ce
nt

ag
e

(%
)

of
 b

ug
 r

ep
or

ts
 th

at
 u

se
 a

 ta
g

Fig. 5: Percentage of bug reports that are associated with
top-20 tags.

0

1000

2000

3000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

N
um

be
r

of
 s

ub
m

itt
ed

 b
ug

s

Fig. 6: Number of yearly submitted bug reports.

4 RESEARCH QUESTIONS AND RESULTS

4.1 RQ1: Does the in-place editing feature help
improve the quality of bug reports on the Stack
Exchange bug management system?
We first conduct a quantitative analysis to understand how
often the in-place editing feature is used for bug reports
and who perform those edits. We also examine the rela-
tionship of the number of edits that bug reports received
with their bug-fixing time and bug-fixing rate. Then, we
conduct a qualitative analysis to understand the rationale for
editing bug reports. The following subsections describe the
approach and findings for our quantitative and qualitative
analysis.

4.1.1 Quantitative Analysis
Approach: We calculate the total number of bugs that were
edited each year to understand how the in-place editing
feature has been used over time and visualize the results in
a plot. We also check the role of users who are involved in
the in-place editing process. We categorize the stakeholders
of a bug management system as reporters and non-reporters
(i.e., any users other than the reporters.) We are interested
in learning if edits that are performed on a bug report
help improve the quality of that bug report. We study the
relationship between the number of received edits by bug
reports before they are fixed and their bug-fixing time and
likelihood. Our assumption is that the quality of a bug report
improves as it receives more edits, which leads to a higher
likelihood of that report getting fixed and a shorter fixing
time for that report.
Findings: The in-place editing feature has been used
steadily over the years. As shown in Figure 7, the pro-
portion of the reported bugs that were edited over the years
is consistently above 80%. In total, 83% of the bug reports
were edited through the in-place editing feature.

All stakeholders (i.e., reporters and non-reporters)
are editing bug reports. We observed that 43% and 90% of
the bug reports were edited by reporters and non-reporters.
We also observed 33% of the bug reports that were edited
by both reporters and non-reporters. In total, 39% and 61%

7

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Ed

ite
d

Bu
gs

 /
To

ta
l B

ug
s (

%
)

Fig. 7: The proportion of the reported bugs that are edited
over the years.

of the edits were performed by reporters and non-reporters,
respectively.

In general, the likelihood of bug reports getting fixed
is positively associated with the number of edits that
were performed before getting fixed. Figure 8 shows the
ratio of fixed bugs among different groups of bugs that
received different numbers of edits before getting fixed.
The ratio of fixed bugs is defined by the total number of
fixed bugs with respect to the total number of reported
bugs. We observe that the ratio of fixed bugs has a positive
association with the number of edits when the number of
edits is between 1 and 15. One possible reason is that the
received edits produce further information (such as observed
behavior, screenshot, and steps to reproduce) on reported
bugs that increased the likelihood of a bug getting fixed.
The assumption is supported by our qualitative analysis as
shown in Section 4.1.2. We also observe that the bug-fix
ratio drops when bug reports received more than 15 edits.
One possible explanation for such a drop is that the size of
the group consisting of bug reports with more than 15 edits
(i.e., 315) is much smaller compared to the other groups
(i.e., 32,062, 8,493 and 1,059), which may affect the result.
In addition, Figure 9 shows the time of getting a bug fixed
(in hours) among the different groups of bug reports. We
observe that a positive association between the number of
edits that were performed on bug reports and their fixing-
time when the number of edits increases from 1 to 15. One
possible explanation is that bug reports with more edits are
more difficult and require more time to fix. Similar to the
prior analysis on the ratio of fixed bugs, we also observe a
drop for more than 15 edits. We assume it is because of the
same reason - the small size of the last group of bug reports.
The Wilcoxon rank-sum test shows the difference between
bug reports with 1-5 edits and bug reports with 6-10 edits
is statistically significant (p − value < 0.5), while there is
no significant difference between the groups with 6-10 edits

and those with 11-15 edits.

4.1.2 Qualitative Analysis
Approach: We perform a qualitative analysis to understand
the rationale for the performed edits on the collected bug
reports. Similar to prior studies [12], [31], to achieve a
confidence level of 95% with a confidence interval of 5%,
we randomly sampled 380 edits from all the edits of the
studied bug reports (i.e., 22,105 edits in total) and identified
the rationale for such edits. Bettenburg et al. investigated
the types of bug-related information that are desired by
developers when resolving bugs [7]. If a user edits a bug
report to add such information, we consider that such an
edit helps improve the quality of the bug report. Table 4
(a) provides a brief description of rationales for editing bug
reports that help improving the quality of such reports. To
examine if the edits improve the quality of bug reports,
we reuse the types of information that were defined by
Bettenburg et al. to label our studied edits. We also observed
several types of Stack Exchange-specific edit rationales that
are not defined in Table 4 (a), such as fixing grammar issues
and formatting the text. We note that such types of edits are
only possible due to the in-place editing feature of Stack
Exchange. We performed the following process to derive a
list of rationales for edits and labeled the randomly sampled
edits. This process involves three phases and is performed
by the first two authors (i.e., A1 & A2) of this paper:
● Phase I: A1 started with the rationales for edits defined

by Bettenburg et al. [7] and derived a draft list of
Stack Exchange-specific rationales for edits based on
50 randomly sampled edits. Then, A1 and A2 used the
draft list to label the edits collaboratively. During this
phase, the Stack Exchange-specific rationales for edits
were revised and refined (the rationales are shown in
Table 4 (b)).

● Phase II: A1 and A2 independently applied the result-
ing rationales from Phase I to label all 380 edits. A1
& A2 took notes regarding the deficiency or ambiguity
of the labeling for the rationale(s) of each edit. During
this phase, no new rationales were introduced.

● Phase III: A1, A2 discussed the coding results that
were obtained in Phase II to resolve any disagreements
until a consensus was reached. The inter-rater agree-
ment of this coding process has a Cohen’s Kappa of
88.4% (measured before the start of Phase III), which
indicates that the agreement level is substantial.

Findings: the majority (57%) of the studied edits im-
proved the quality of their associated bug reports by
adding/correcting/clarifying essential bug-related infor-
mation (e.g., observed behavior and environment infor-
mation). In general, 59% of such edits enhanced the content
of the bug report (i.e., content enhancement edits). The
remaining non-content enhancement edits were concerned
with grammatical and formatting changes, accounting for

8

1-5 6-10 11-15 >15
Edits

0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

 o
f F

ix
ed

 B
ug

s

Fig. 8: The ratio of fixed bugs among different groups
of bugs that received different number of edits before
getting fixed.

1-5 6-10 11-15 >15
Edits

0

5,000

10,000

15,000

20,000

Bu
g

Fi
xi

ng
 T

im
e

(h
ou

rs
)

Fig. 9: The time of getting fixed among different groups
of bugs that received different number of edits before
getting fixed.

(a) Rationale for edits as documented by Bettenburg et al. [7] (Bug-related rationales)
Edit Rationale Description (D) - Example (E) Percentage

Observed behavior (D) Adding a more detailed observation of the bug. (E #60189) regarding buggy behavior in tags, an edit
added: “Edit: The tag has disappeared from the tags page.” 41.3%

Screenshot
(D) Addition of a screenshot to visually demonstrate the occurrence of the reported bug. Editors add
additional text to demonstrate the screenshot. (E #259358) “Please see in this figure a screenshot of the
error: .. http://i.stack.imgur.com/PBcTD.png” was added.

26.9%

Version (D) Adding information about the software version on which the reported bug was observed. (E #273515)
“UI items displayed twice bug in android: Stack Exchange Android App Version 1.0.77” was added. 13.5%

OS (D)Adding information about the operating system on which the reported bug was observed. This also
includes browser information. (E #273724) “On iOS 9.2.1 Mobile Safari.” was added. 9.9%

Severity (D) Stressing on the importance of the reported bug. (E #279117) regarding text, “Seriously, this is slightly
irritating, I am not just posting this to point out how annoying..” was added. 4.9%

Expected behavior
(D) Adding a description of what is expected as a normal/optimal behavior to emphasize that the
abnormality caused by reported bug. (E #311991) the editor added “But the warning as stated is misleading
and could possibly be replaced by a different warning about a poorly phrased title or something similar.”

4.5%

Steps to reproduce (D) Adding additional information steps for replicating the bug. (E #142696) “Steps followed: *Go to
chat site. *Found that I was logged in as account 1 * Where is logout? (bug 1) ... ” was added. 4.0%

Stack traces
(D) Adding stack traces related to the reported bug. (E #263612) on keyboard shortcuts, the original
content “the user presses ‘Command + L’ the ‘Insert Hyperlink’” was edited to “the user presses
>kbd<Command>/kbd< + >kbd<L>/kbd< the ‘Insert Hyperlink‘”.

2.7%

Hardware
(D) Adding information related to hardware in the bug report. (E #75805) regarding lag in website: “I just
noticed that the bug seems absent on a fourth PC, my old 1.5 GHz laptop with Win XP SP 3 and 500 MB
RAM. I have only tried ..” was added

1.3%

Summary (D) Adding a summary of the bug report to emphasise the important content. (E #296240) editor (who is
also the reporter) added “To recap, the bug is: the title on the page doesn’t...” 0.9%

(b) Stack Exchange specific in-place edit rationales (Stack Exchange-specific rationales)

Clarification
(D) Adding non-bug-related information to further clarify the reported bug. (E #299048) editor clarified
his original post by replacing the text “My reputation remains unchanged (6)” with “My reputation on
stack overflow was 6, at the time of asking the above question ...”

10.8%

Correction (D) Correctting bug-related information, such as the OS information. (E #217448) “This happens for me
on Ubuntu 13.04 (64-bit)” was edited to “This happens for me on Ubuntu 13.10 (64-bit)”. 7.6%

Ad-hoc solution
(D) Editing the original bug report to add an ad-hoc solution or workaround. (E #194556) with incorrect
coloring, editor added “EDIT4: Can be fixed simply by running the JavaScript $(’rect’).css(’stroke-width’,
’0’) or a userstyle rect { stroke: none }. I may make a user[style—script] to fix this.”

2.2%

Adding bug-fix infor-
mation

(D) Information about the bug fix or the deployment of a bug fix. (E #229833) “I’m fairly sure that this
has happened before but it was fixed and I can’t find the bug report.” was added. 1.8%

TABLE 4: The identified rationales for editing bug reports along with an example for each rationale. Edit rationales
that provide bug-related information were previously documented by Bettenburg et al. [7] (however, the description and
examples of these rationales are provided by us to highlight them in the context of our study) (a). The Stack Exchange-
specific rationales (b) are derived from our manual study. The complete URL for each of the above-mentioned examples is
https://meta.stackexchange.com/posts/post-ID, where post-ID (e.g., E #259358) is mentioned in each example in the table.
The rationales are ordered by their percentage.

9

https://meta.stackexchange.com/posts/post-ID

37% and 9% of the edits respectively. Note that the sum of
rationale percentages exceeds 100%, since in some cases,
one edit could have more than one rationale.

We further focus on the edits that are related to content
enhancement. A brief description of all content enhance-
ment edits and their percentages are provided in Table 4.
We observe that 81% of the content enhancement edits
added essential information that is crucial to understand,
reproduce, and fix a bug as defined by [7] (i.e., bug-
related information). Bettenburg et al. identified incomplete
information as the most severe problem for bug reports [7].
Results from our manual analysis suggest that in-place
editing improves the quality of bug reports by adding
bug-related information. We also observe other rationales
for edits, which were not observed by [7], to improve the
quality of bug reports. These new rationales include making
corrections (8%), and providing clarifications (11%). All
content enhancement edits, except for “Ad-hoc solution”
(2%) and “Adding bug-fix information” (2%), improved the
quality of the bug reports. In total, 57% (96% out of the
59% content enhancement edits) of the edits improved
the quality of bug reports.

Fig. 10: An example of a rollback on a bug report23.

In-place edits are sometimes rolled back to resolve
errors that arise when multiple users perform in-place
editing. To understand the rationale behind such rollbacks,
we randomly examined a sample of 50 rollbacks out of the
335 rollbacks in our dataset. From our manual analysis,
we identified the following three main rationales for such
rollbacks: 1) to correct bug-related information (38%), 2)
to undo incorrect grammatical changes (28%), and 3) to
undo unnecessary formatting changes (15%), indicating that
rollbacks provide a mechanism to resolve errors that arise
due to in-place editing. An example of a rollback is shown
in Figure 10. The prior edit changed the original meaning of
the bug report and the author of the bug report then rolled
back the edit.

23. https://meta.stackexchange.com/posts/75105/revisions

Min Q1 Median Q3 Max
Bug-comment 0 1 2 5 52
Answer 0 0 1 1 20
Answer-comment 0 0 0 2 96

TABLE 5: The five-number summary of bug-comments,
answers and answer-comments.

: Summary of RQ1

In-place editing feature is commonly used. More
specially, 57% of the in-place edits improved the
quality of bug reports, e.g., adding/correcting/clar-
ifying essential bug-related information (e.g., ob-
served behavior and environment information). In-
place edits are sometimes rolled back to resolve
errors that arise due to in-place editing.

4.2 RQ2: Is the commenting feature used differ-
ently from the answering feature on the Stack Ex-
change bug management system?

We first conduct a quantitative analysis to understand how
frequently answering and commenting features are used in
Stack Exchange bug threads. We then conduct a qualitative
analysis to understand what types of issues are discussed in
bug-comments and answers.

4.2.1 Quantitative Analysis
Approach: We investigate the use of answering and com-
menting. Hence, we calculate the number of comments and
answers that were posted on each bug report. Users are al-
lowed to post comments on bug reports (bug-comments) and
answers (answer-comments). Therefore, we also compare
the proportion of the comments that were posted on a bug
report and those that were posted on its answers after a
bug report received a status-completed tag, to investigate if
users’ interests shift or not.
Findings: In general, commenting is used more
frequently than answering significantly. We observed
that 76% of the bug reports have at least one bug-comment,
whereas 60% of the bug reports have at least one answer.
A bug report has a median of two bug-comments, one
answer, and zero answer-comment. Table 5 presents the
five-number summary of bug-comments, answers, and
answer-comments. The Wilcoxon signed-rank sum shows
that the difference between bug-comments and answers
is statistically significant (p-value < 0.5). In addition, we
observe that after receiving a status tag, the number of
bug-comments decreases, whereas the number of answer-
comments increases. In 56.8% of the bug threads, after
receiving a status-completed tag, only answers received
comments (answer-comment), while bug reports stop
receiving any comment. In other words, once a status tag

10

https://meta.stackexchange.com/posts/75105/revisions

was applied to a bug report, users shifted their contributions
from commenting on the bug report to commenting on its
answers.

4.2.2 Qualitative Analysis
Approach: We perform a qualitative analysis of the dis-
cussed issues in bug-comments and answers to understand
if users discuss different issues through these two channels.
We randomly sampled a statistically representative sample
of 380 bug-comments from 68,207 bug-comments and 380
answers from 15,094 answers of bug reports to achieve a
95% confidence level and a confidence interval of 5%. We
employed the same process that we performed in RQ1 on
these 380 bug-comments and 380 answers. The identified
types of the discussed issues in bug-comments and answers
are shown in Tables 6 and 7, respectively. Cohen’s Kappa
values are 89.1% and 80.0% for our tagging of the bug-
comments and answers, respectively.
Findings: Users leverage bug-comments to ask for or
to provide more bug-related information (e.g., observed
buggy behavior and replication confirmation) as well
as to clarify the reported bug, whereas answers are
commonly used to provide the solution and to explain
the cause of a bug. We observe that more than 66% of the
bug-comments were posted to report the observed behav-
ior, replication confirmation, related links, or to ask more
information from the reporter in an attempt to clarify the
reported bug (see Table 6). Interestingly, we also observed
in some cases, users integrated the information that was
discussed in a bug-comment into the corresponding bug
report via the in-place editing feature. For example, in a bug
report24, a user asked the reporter a clarification question
and the reporter used the in-place editing feature to add the
requested information to clarify the reported bug. In other
words, bug-commenting provides a mechanism to ask and
collect additional information for a bug report.

Answerers are more likely to report the deployment
time for a bug-fix (60%) and explain the cause of a bug
(35%) (see Table 7). For example, an answerer mentioned
that “We threw 10,230 errors here (network-wide) due to a
web server exhausting memory (due to another, competing
application pool being a bully). I posted some details ...”25,
which indicates the cause of the bug. In another example,
the answerer mentioned that “The bug happened when
submitting a comment while the text cursor was not at
the end of the comment...”26. The cause of bug provides
a technical reason for which the bug was manifested, and
reasoning for no-fix provides a justification for the reason
behind no-fix. The rationale reasoning for no-fix (27%)
includes those examples where features of a system were

24. https://meta.stackexchange.com/questions/233775
25. https://meta.stackexchange.com/questions/296438
26. https://meta.stackexchange.com/questions/222292

Irr
ele

va
nt

Im
pa

ct
of

fix

Obs
erv

ed
 be

ha
vio

r
of

an
sw

er

Ag
ree

men
t w

ith

cla
rifi

ca
tio

ns

Disa
gre

em
en

t w
ith

cla
rifi

ca
tio

ns
Bu

g f
ix

co
nfi

rm
ati

on
Re

lat
ed

Nex
t s

tep
s

Bu
g c

au
se

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc

en
ta

ge

22%

18%
16% 16%

10% 10%

6%

2% 2%

Fig. 11: Qualitative analysis of answer-comments.

incorrectly reported as bugs. Such bugs received “status-
declined” or “status-bydesign” tags from the moderators
respectively (see Section 2). Interestingly, we observed only
a few cases (1%) where users provided screenshots of the
bugs in the answers.

We also observe some issues that are discussed in
both bug-comments and answers, such as information about
the bug-fix deployment, ad-hoc solutions, and bug image
information. As to why such issues are discussed in answers
and not in bug-comments? We conclude the following
possible reasons: 1) Stack Exchange does not provide any
guideline for using commenting and answering channels.
Thus, it may cause confusion about where to discuss such
information for users. For instance, a user asked a question
“When to answer vs when to just comment?”27 on Meta
Stack Exchange, which indicates some users are confused
about the use of commenting and answering. 2) Comments
have a maximum length of 600 characters, which is much
shorter than answers. Thus, Stack Exchange users have
to use answering channel to provide bug-fix information
or solution when the content is beyond the limitation. 3)
Answers can help the owner make reputation points, but
comments do not. This may motivate the users to post
answers instead of comments.

Comments are expected to be used for: 1) requesting
clarifications from the question askers or the answerers;
2) providing criticism; and 3) adding minor information28.
However, we observed that Stack Exchange users lever-
aged comments for providing Ad-hoc solutions (4.2%) and
bug-fix deployment information (5.3%), which are recom-
mended to post through an answer. We also observed that
both answer comments and answers were used to explain
why bugs occurred. This perhaps because Stack Exchange

27. https://meta.stackexchange.com/questions/
28. https://meta.stackexchange.com/questions/19756

11

https://meta.stackexchange.com/questions/233775
https://meta.stackexchange.com/questions/296438
https://meta.stackexchange.com/questions/222292
https://meta.stackexchange.com/questions/
https://meta.stackexchange.com/questions/19756

Type Description(D) - Example (E) Percentage

Observed buggy
behavior

(D) Providing more information about the buggy behavior. (E #254351) the commenter added the following
information: “Note it seems to randomly affect Question edits now. Question posting does not seem affected
but ...”

23.2%

Replication con-
firmation

(D) Confirming the reproducability of a reported bug. (E #66417) a commenter provided replication
confirmation by including the following comment: “yup it is reproducible.” 20.0%

Irrelevant (D) Providing any comments that is not related to bug-fix or bug-related information. (E #26740) a
commenter mentioned: “This is the right place to report bugs and support questions. ’ 12.1%

Asking more in-
formation about
bug

(D) Asking more information about the buggy behavior. (E #196930) the following question was asked in a
comment: “Do you have a link to the question?” 11.6%

Links related to
the bug

(D) Adding possible duplicates of the bug report or related links relevant to the reported bug.
(E #112096) a link related to the bug report was added in a comment: “Sort of related:
meta.stackexchange.com/questions/105030/”

10.5%

Expected behav-
ior of the system

(D) Providing what is expected (non-buggy) behavior of the system. (E #141867) a commenter mentioned
“This doesn’t look like it’s behaving as it should, ... the suggested edit should be recorded as improved, not
rejected. ”

6.8%

Clarification of
system design

(D) Providing clarifications about how the system works. (E #209229) a commenter clarified the problem by
adding the following comment: “This isn’t really a bug. This is typical, as double clicking something will
highlight it. In this case, it’s just highlighted oddly due to the positioning of the element.”

5.8%

Bug-fix deploy-
ment information

(D) Indicating when a bug-fix will be deployed. (E #83661) the expected time to fix the bug was reported in
the comment: ‘fixed to be deployed some time tomorrow” 5.3%

Ad-hoc solution (D) Providing an unofficial fix or ad-hoc solution to the reported bug. (E #19622) an unofficial bug-fix was
provided by the following comment: “temporary solution: meta.stackexchange.com/questions/27702/..” 4.2%

Bug image link (D) Providing a URL for an image to illustrate the reported bug. (E #163475) a URL of an image was added
in the comment: “imgur.com/aL6zn it’s white.” 0.8%

TABLE 6: The types of discussions identified in bug-comments. The types are ordered by their percentage.

Type Description (D)- Example (E) Percentage
Bug-fix deploy-
ment information

(D) Same as Bug-fix deployment information in Table 6. (E #226249) the following answer was provided:
“You should see this changed with our next build today. Thanks for catching it.” 59.7%

Cause of bug (D) Explaining why a bug occurred. (E #250507) an answerer replied: “... The problem was that the web has
a few permutations of MathJax: Most sites.” 34.7%

Reasoning for no
fix

(D) Clarifying about how the system should work, and why the bug will not be fixed/a fix is not required.
(E #175684) an answerer replied: “We will not fix this. The issue is in a specific combination of OS and
browser, and ...”

27.4%

Ad-hoc solution (D) Same as Ad-hoc solution in Table 6. (E #27494) an answerer suggested a possible solution: “As others
have mentioned, try in a different browser to see if that helps as well.” 4.5%

Replication con-
firmation

(D) Same as Replication confirmation in Table 6. (E #101453) an answerer confirmed the replication of the
bug: “I was able to reproduce it in Safari on Snow Leopard.” 3.4%

Bug image (D) Providing images to demonstrate the bug (and not the answer). (E #267214) a screenshot was added to ex-
plain the bug: “Here’s a screenshot of the one I currently can’t pass ... https://i.stack.imgur.com/EY8nE.png” 1.3%

TABLE 7: The types of discussions identified in answers. The types are ordered by their percentage.

users do not use the answer channel unless they think their
contribution is significant.

Furthermore, we observe that once the status-completed
(i.e., indicating a bug is resolved) tag was applied to a
bug report, users tend to shift their contributions from
commenting on the bug report to commenting on its answers
(as the platform permits users to comment on the bug
reports or answers). We performed a qualitative analysis of
the content of answer-comments by randomly sampling 50
answer-comments that were posted after the status tag was
added to a bug report.

Users are more likely to discuss the impact of
the bug-fix (or no-fix) in answer-comments compared
to bug-comments. We observe that a number of answer-
comments (60%) discuss the impact of the bug-fix or no-fix
(18%), observed behavior of the bug-fix (16%), and discuss
agreement (16%)/disagreement (10%) regarding a no bug-

fix decision. The types of discussions identified in answer-
comments are provided in Figure 11. For example, in a
bug report29 regarding syntax highlighting in Pascal, the
answer explained how the bug-fix integrated the required
libraries. A user concerned about the impact of the bug-
fix: “Could this cause code-comments to break in Delphi?”.
Commentary about the solution also involved confirmation
for the working of bug-fix (10%) and additional information
related to the answer (6%). We also observe few cases where
subsequent actions after the bug-fix(i.e., “Next steps”) and
the cause (i.e., “Bug cause”) of the bug were reported.

In summary, bug-comments and answers serve different
purposes for discussions regarding the bug and its fix or
no-fix decision and users tend to shift their contribution
from bug reports to answers after a bug is fixed. The

29. https://meta.stackexchange.com/questions/171666

12

https://meta.stackexchange.com/questions/171666

answering and commenting features probably provide a
solution for the long sequential comments by structuring
the contribution of community in a better way. However,
clear guidelines regarding where to contribute (e.g., answers
or comments) needs to be provided since users may be
confused sometimes.

: Summary of RQ2

In general, commenting is used more frequently
than answering and they are used for different
purposes. Bug-comments provide a channel for
asking and providing more bug-related information,
whereas answering provides a channel for including
the causes of a bug and bug-fix information.

4.3 RQ3: How do users leverage the voting fea-
ture of the Stack Exchange bug management sys-
tem?

4.3.1 Quantitative Analysis

Approach: We perform a quantitative analysis to un-
derstand how the use of voting differs across different
components of a bug thread. We consider votes on bug
reports, answers, bug-comments, and answer-comments as
bug-votes, answer-votes, bug-comment-votes, and answer-
comment-votes, respectively.

First, we calculate the proportion of each component
of a bug thread that has at least one upvote or downvote
over the years. To show the differences between upvoting
and downvoting, we divide our analysis into the use of the
upvoting and downvoting, respectively.

Second, we calculate the ratio of votes that were re-
ceived by different components with respect to the total
number of votes received across all the components of a bug
thread. For example, the ratio of answer-votes is measured
as the total number of received votes on all answers of a
bug report divided by the total number of votes received in
all components of a bug thread.

Findings: More than 80% of the bug reports and
answers receive upvotes consistently over the years.
The use of upvoting on bug-comments and answer-
comments is less frequent than bug reports and answers
significantly. Figure 12 shows the use of the upvoting and
downvoting on the different components of a bug thread
(i.e., bug reports, answers, bug-comments, and answer-
comments) over the years, in terms of the proportion of
received votes across all the components. As mentioned in
Section 2, both upvotes and downvotes can be given on
bug reports and answers, however, comments (i.e., bug-
comments and answer-comments) can only receive upvotes.
Compared with upvotes on bug reports and answers (more
than 80%), a smaller proportion of bug-comments and
answer-comments (less than 40%) received upvotes.

In addition, if we look at the proportion of votes
that were received by each component of a bug thread,
the bug report received the largest proportion of votes
(median proportion is 57%), while bug-comments (median
proportion is 5%) and answer-comments received the least
amount of votes (median proportion is 0%) (see Figure 13).
The wilcoxon signed-rank shows that the differences of
proportion of votes between each component of a bug report
are all statistically significant (p-value < 0.5).

The use of the downvotes has increased gradually
over the years, with more downvotes on bug reports
than on answers (see Figure 12 (b)). In recent years, the
significant increase of downvotes is surprising because users
lose reputation points when they downvote. One possible
explanation of this phenomenon is that over the years,
users have earned more reputation points to spare. Another
possible reason is that users have become more critical
about bug reports, thus are more likely to be more vocal
and to express their opinions through the downvoting.

4.3.2 Qualitative Analysis
Approach: We observed that some users left the rationale
for downvoting in their bug-comment. Therefore, we per-
form a qualitative analysis to understand the rationale for
the downvoting of bug reports and answers. First, we find
all the bug reports that satisfy the following criteria:

1) Reports having one of the following keywords “down-
vote”, “down-vote” or “down vote” in their associated
comments. Please note that Stack Exchange does not
mandate reasons for such downvotes. However, we ob-
served several cases where users mentioned the reasons
for downvotes in the comments of those bug reports.

2) Reports having a negative score. As mentioned in Sec-
tion 2, the score is the sum of upvotes and downvotes.
A negative score indicates that a bug report receives
more downvotes than upvotes.

We added the second criterion since in some cases, a
comment with the listed keywords (i.e.,“downvote”, “down-
vote” or “down vote”) does not necessarily mean the
commenter share the reason for downvoting (e.g., users
discussed the downvote itself in comments). We ended up
with 98 bug reports that satisfy the above criteria. We
performed the same process as we did in RQ1 to understand
the rationale behind those downvotes. We also performed
the same process to investigate the rationale for downvotes
on answers. We ended up with 44 answers. Our Cohen’s
Kappa for these two manual studies are 0.72 and 0.92,
respectively, which indicate a sufficient agreement.

Findings: Most of the downvotes on bug reports
were made due to the disagreement about whether the
reported “bug” is a real bug or the low quality of the
bug reports. A brief overview of the rationales that we
identified from our qualitative analysis results is shown in
Table 8. We observed that 60% of the studied downvotes

13

2009201020112012201320142015201620172018
Year

0%

20%

40%

60%

80%

100%

120%

140%
Pr

op
or

tio
n

of
 c

om
po

ne
nt

 re
ce

iv
in

g
up

vo
te

s

Bug
Answer
Bug-Comment
Answer-Comment

(a) The use of upvoting

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pr
op

or
tio

n
of

 c
om

po
ne

nt
 re

ce
iv

in
g

do
wn

vo
te

s

Bug
Answer

(b) The use of downvoting

Fig. 12: The use of upvoting and downvoting across different components of a bug thread, namely: the bug report, answers,
bug-comments, and answer-comments. Note that downvoting is not allowed on comments.

Bug-votes Answer-votes Bug-comment
votes

Answer-comment
votes

0%

20%

40%

60%

80%

100%

Di
st

rib
ut

io
n

Pe
rc

en
ta

ge

Fig. 13: The ratio of bug-votes, answer-votes, bug-
comment-votes, and answer-comment-votes.

were given to express disagreement with the reported “bug”
being a real bug. We also observed that the proportion of
bug reports that were tagged with “status-bydesign” and
have a negative score (37%) is much higher than those
with a positive score (10%), which also suggests that users
are likely to use downvotes to disagree with the reported
bug is a real bug. More specially, 4%, 9%, and 1% of
the bug reports were downvoted due to the incomplete,
incorrect, and duplicate bug information, respectively. For
example, one commenter mentioned “i downvoted because
the bug report is incomplete and not helpful. the first step to
debugging is almost always to reproduce the problem, and
by not providing the browser the op is making it exceedingly
hard to verify this bug report”30. In other words, 15% of the
downvotes were made due to the low quality of bug reports.

30. https://meta.stackexchange.com/questions/151844

In addition, 17% of the bug reports received downvotes due
to the insignificant or low impact of the bug.

: Summary of RQ3

Upvoting is used more frequently on bug reports
and answers than comments over the years. The use
of the downvoting has increased gradually over the
years, with more downvotes on bug reports than on
their associated answers. Most of the downvotes
on bug reports were made due to disagreement
about whether the reported “bug” is a real bug and
the low quality of bug reports (i.e., reported bugs
are incorrect, insignificant, incomplete and non-
reproducible).

5 DISCUSSION

5.1 Studying Mislabeled Issues Reports
We observed 278 bug reports that were labelled as feature
requests at the time of submission and 559 feature requests
that were submitted as bug reports initially. To further
understand the reason behind such mislabeled cases, we
performed a manual analysis of 50 questions from both
groups.

Bug reports were submitted as feature requests due
to users considering their associated problems as design
choices and thus asked for changes as feature requests.
However, incorrect implementation or failure to make nec-
essary changes caused those problems. For example, a user
reported that “Have you considered accepting an answer or
starting a bounty” message on the questions page appeared
out of place considering questions that were listed on the

14

https://meta.stackexchange.com/questions/151844

Rationale for
downvotes Description (D) - Example (E) Percentage

Not a bug (D) The reported “bug” is not a real bug. (E #308111) commenters responded “No, that is by design,
not a bug. That is how Markdown works.” 59.7%

Insignificant
(D) The reported bug has a low impact or does not create a significant difference to the software.
(E #96300) commenters mentioned: “I don’t really care where it’s from, if it’s helpful and could be
helpful to others...”, indicating that the bug isn’t helpful and is insignificant.

16.9%

Incorrect
(D) Reporting a bug without a proper analysis of the buggy behavior, e.g., reporting mistaken bug
information. (E #145250) regarding reputation loss by 2 points, a commenter mentioned: “It looks
fine to me. Are you sure it decreased twice?”

9.1%

Non-
reproducible

(D) Bug reports that were not reproducible. (E #159376) a commenter responded: “Nope, don’t see
that kind of behaviour here at all” 9.1%

Incomplete
(D) The bug report does not contain complete or adequate information about the bug. (E #112819)
regarding reputation decrease, a commenter mentioned: “what went down by 2? the question/answer
score? the user’s rep? your rep? care to provide a link?”

3.9%

Duplicate (D) Reporting a duplicate bug report. (E #99429) “it seems to be a duplicate, yes. thanks guys. you
can vote to close.” 1.3%

Offensive
(D) Using offensive language to express anger while reporting a bug. (E #292490) “I took the liberty
of changing the title to your post. calling things “bogus” attracts downvotes. hopefully this more
neutral title will make the question better received.”

1.3%

TABLE 8: The identified rationales for downvotes on bug reports. The rationales are sorted from the most observed to the
least observed rationale. The complete URL for each of the above-mentioned examples is https://meta.stackexchange.com/
posts/Bug-ID, where Bug-ID is mentioned in each example (E) in the table.

same page. The user suggested to move the text to the right
side of the page and submitted a feature request. However,
a moderator confirmed that the issue was caused by a bug31.
We also observed cases where users anticipated missing
features and submitted feature requests. However, incor-
rect implementation prevented the system from behaving
as expected. For example, a user observed that the Stack
Exchange software showed an error when someone forgot
to enter her username on the sign up page. A feature request
was submitted to prompt users to enter the username. An
answer from a Stack Exchange developer confirmed that
the problem was caused due to a bug in the implementation
that will be fixed in the next build32.

Our manual investigation revealed three main reasons
for submitting feature requests as bug reports. First, users
were not aware of specific design choices or considered
that the current design of the system needs to be corrected,
which led to the submission of bug reports. For example, a
user submitted a bug report because the bottom of a code
snippet was clipped on the submission and the user was not
aware of that, this happened because the answer contains
more than the 30,000 character limits that is supported by
the site33. Second, users were not aware of recent changes
and incorrectly submitted bug reports. For example, Stack
Exchange developers made a change to remove shading on
accepted answers. A user using IE8 browser considered
that the browser might cause the issue and reported that
issue as a bug34. Third, we observed cases where users
considered that observed issues were caused by incorrect

31. https://meta.stackexchange.com/questions/317431
32. https://meta.stackexchange.com/questions/237795
33. https://meta.stackexchange.com/questions/13748
34. https://meta.stackexchange.com/questions/22510

implementation whereas the issues were caused by missing
features.

5.2 The Implications of our Findings

This section discusses the implications of our findings.
Traditional bug management systems should

consider introducing the in-place editing feature.
Finding information from a long sequential comment thread
of a bug report is a challenging task [2]. The in-place
editing feature enables users to edit a bug report directly
instead of leaving long thread of comments to change/add
information about the bug report. As we observed in
RQ1, the in-place editing feature is steadily used over
the years in the Stack Exchange bug management system
and 57% of the studied edits improved the quality by
adding/correcting/clarifying bug-related information (e.g.,
observed behavior and environment information). The
rollback feature is used to resolve any error due to
in-place editing.

Traditional bug tracking systems should consider
introducing the answering and commenting features to
encourage the community to better organize and struc-
ture their contribution to bug reports. As we observed
in RQ2, users discuss different issues in bug-comments and
answers, i.e., users tend to clarify bug-related information
in bug-comments; provide deployment time of a bug-fix and
cause of the bug in answers; while discussing the expected
impact of the bug-fix in answer-comments. Therefore, the
answering and commenting features probably provide a
solution for the long sequential comments by structuring
the contribution of community in a better way. We also

15

https://meta.stackexchange.com/posts/Bug-ID
https://meta.stackexchange.com/posts/Bug-ID
https://meta.stackexchange.com/questions/317431
https://meta.stackexchange.com/questions/237795
https://meta.stackexchange.com/questions/13748
https://meta.stackexchange.com/questions/22510

observed some issues that are discussed in both bug-
comments and answers, such as information about the bug-
fix deployment, which may indicate that users are confused
about where to discuss such information. Clear guideline
about where (e.g., answers or comments) to discuss a
particular issue may need to provide to users.

Traditional bug reporting systems should consider
support for downvoting. In RQ3, we observed that 60%
of the studied downvotes were made on bug reports due
to the disagreement about a reported “bug” is not a real
bug. Traditional bug management systems can include the
downvoting feature to eliminate bug reports that are not real
bug, rather a feature of the system. Bettenburg et al. reported
that bug reporters do not always provide the content required
by developers to resolve the bug [7]. Voting on bug reports
and answers may provide a mechanism for traditional issue
reporting systems to ingrain desirable behavior in reporting,
and better maintain bug reports. For example, in RQ3, we
observed that users downvote a bug report if the bug report
does not contain complete or adequate information about the
bug. Meanwhile, the rationales for downvoting should be
explained when performing downvoting (something that
is not implemented by the Stack Exchange platform) if
the downvoting feature is introduced. Such explanations
can help in improving the bug report and can provide
feedback and help novice users to learn how to write a
good bug report. However, note that any rules may have
undesirable side effects. For example, introducing downvot-
ing feature or voting the quality of bug reports may affect
the user participation in reporting bugs and contributing to
those bug reports, since prior studies from social science
and psychology report that negative feedback negatively
impacts user participation [16], [19], [32]. The downvoting
feature may also have a negative impact on the health of
the community. For example, Cheng et al. observed that
downvoted users go on to downvote others and suggest that
negative behavior can persist in and permeate throughout a
community when left unchecked [13]. Hence, future studies
should investigate mechanisms to ensure the quality of user
contributions while minimizing the negative impact of such
mechanisms on user participation and community health.
For instance, one possible mechanism is the one that is
currently used by Stack Exchange for avoiding the abuse of
the downvoting feature – making cost for downvoting (i.e.,
every downvote costs the downvoter two reputation points).

6 THREATS TO VALIDITY

External validity: Threats to external validity are related
to the generalizability of our findings. In this study, we
performed a large-scale analysis of the Stack Exchange
bug management system. Our results may not generalize
to other Q&A platforms. However, we would like to point
to the fact that leveraging a Q&A website for the purpose of
bug management is not very common due to the prevalence

of traditional bug management systems. Thus, our studied
dataset provides a rare opportunity for the designers of tra-
ditional bug management systems to learn about the unique
features of managing bugs through the Q&A platform.

In RQ1, we examined the relationship between the
number of received in-place edits by a bug report and the
bug-fixing time as well as the likelihood of that bug getting
fixed. Although we observed a positive association for both
examined relationships, we cannot conclude a causation
relationship between them (i.e., in-place edits led to a higher
likelihood of a bug getting fixed or fixed faster). To alleviate
this threat, we also performed a qualitative study in RQ1 to
examine the rationale for the performed edits and observed
that Stack Exchange users leverage the in-place editing
feature to include information that improves the quality of
bug reports (e.g., expected behavior, screenshots, and steps
to reproduce).

Internal validity: Threats to internal validity relate to
experimenter bias and errors. Our study involved several
qualitative analyses in each of our RQs. To reduce the
bias from human factors, two authors independently labeled
the studied data for each analysis and discrepancies were
discussed until a consensus was reached. We do note that
the levels of inter-rater agreement of all our qualitative
studies are high. When conducting the qualitative analysis
on edits, answers, and comments in our RQs, it is practically
impossible to manually analyze all of them due to their large
size and needed effort to perform such in-depth analysis. To
minimize the bias in our findings, we studied statistically
representative random samples of our studied datasets to
ensure a 95% confidence level and 5% confidence interval
commonly done by prior studies [12], [31].

7 RELATED WORK

In this section, we discuss prior studies that are related to
our study.

7.1 Studying and Improving the Bug Reporting
Process

Several studies have been conducted to understand the
challenges in managing bug reports. Just et al. performed a
study to understand the associated challenges with reported
bugs in open source projects (e.g., missing crucial bug
information) and provided some suggestions (e.g., providing
tool support for users to collect and prepare the information
that developers need) to improve next-generation bug man-
agement systems [20]. Bettenburg et al. interviewed Eclipse
developers and noted that the steps to reproduce a bug was
highly needed by developers and that inaccurate information
hinders the resolution of bugs [6]. The authors also revealed
a mismatch in the information provided by reporters and
information required by developers to fix bugs.

16

A number of studies have been conducted to understand
the fixing time and rate of bugs that are tracked using
traditional bug management systems. Zhang et al. observed
that the median bug-fixing time of Eclipse bugs is 586
hours (0.6 months) [35]. Bhattacharya et al. studied the bug-
fixing time in open source Android Apps, in which bugs are
tracked using Bugzilla and Google Code [8]. The average
bug-fixing time ranges from 0.31 months to 4.79 months for
different projects. Meanwhile, the bug-fixing rate of these
studied projects varies from 0.2% to 49.1%. The bug-fixing
times for the two biggest projects (i.e., Android Platform
and Firefox Mobile) are 3.3 and 4.7 months, respectively;
the bug-fixing rates for these two projects are 65% and
29.9%, respectively. Zou et al. investigated the bug-fixing
rate for Eclipse and Mozilla – both projects manage their
bugs using Bugzilla [40]. The overall bug-fixing rates for
Eclipse and Mozilla are 66% and 44%, respectively. Ripon
et al. investigated bugs in four open-source software systems
(i.e., JDT, CDT, PDE, and Platform of Eclipse product fam-
ily) and found that 46.4% to 54.3% of the bugs were fixed
within seven days of their submission [27]. In this study, we
observed that the median bug-fixing time of Stack Exchange
bug management system is 1.6 days, which is much faster
than the studied projects of prior studies. One possible
explanation is that Stack Exchange is a web application,
which requires bugs to be fixed as soon as possible or that
bugs in these Q&A based bug management platforms are
more trivial. Another explanation is that such Q&A based
bug management platforms facilitate bug-fixing. The bug-
fixing rate is 38.3%, which is lower than Android Platform
but higher than Firefox Mobile.

Furthermore, a considerable number of prior studies
have been done to study and improve the quality of bug
reports. Sasso et al. performed a large-scale study of bug
reports to better understand the components of a bug report
that impact its resolution time. They observed that some
core elements (e.g., screenshot and the stack trace) of a
bug report do impact the resolution time of the report [14].
In our study, we observed that developers asked for more
information about a bug in its comments (e.g., screenshoot,
observed behavior, and stack traces), and a large percent-
age of edits were performed to add missing information
that improves the quality of the report. In other words,
such information is important for developers to fix bugs.
Hooimeijer et al. modeled the quality of a bug report by
analyzing their features [17]. Surprisingly, the self-reported
severity of a bug report is not a reliable indicator of
the importance of the bug. Chaparro et al. designed an
automated approach to detect the absence (or presence)
of observed behavior and the steps to reproduce a bug
report [10]. Rejaul et al. proposed an approach to predict
the missed key features (e.g., expected behavior) in a bug
report [26]. Our observations also highlight the need for
such tools to detect the missed key features in a bug report,

since we observe that it is common for developers to ask
for more information about a bug report in comments. Tian
et al. studied the severity of bug reports and proposed an
approach to mitigate unreliable factors that lead to the false
assessment of bug severity [29].

While prior studies focus on improving bug reports
by studying which types of information are important and
how to detect those information automatically, we focus
on investigating new features (e.g., in-place editing) that
could be potentially used in bug management systems. Our
downvoting study highlights that such a feature can be used
by the community to collaboratively improve the reporting
of bugs.

7.2 Leveraging Crowdsourcing to Support Bug
Management Activities

Crowdsourcing could be leveraged to improve the bug
management, such as bug reporting, bug triaging, and bug
fix. Breu et al. observed that interacting with developers
provides help in fixing bugs in term of shortening the reso-
lution time [9]. Zhou et al. found that users involved in the
development activity, like bug reporting and participating in
the community, are more likely to become long-time con-
tributors [39]. Several prior studies proposed bug triaging
and assignment approaches by leveraging developers’ con-
tribution to Q&A websites (i.e., Stack Overflow) to estimate
their expertise in particular domain [4]. Liu et al. developed
an approach to leverage the crowdsourced knowledge of
Stack Overflow to repair bugs automatically [21].

Different from prior studies which leveraged crowd-
sourcing to support bug management activities, we inves-
tigate the use of three unique features (e.g., in-place editing,
answering and commenting, and voting) in Q&A style bug
management systems and provide insights for traditional
bug management systems. We observe that such unique
features help the community to work collaboratively on
improving the quality of their bug reports by instilling best
practices through voting and downvoting.

7.3 Studying Technical Q&A Websites

Technical Q&A websites like Stack Overflow have accu-
mulated a large volume of such valuable knowledge for
developers and software engineering researchers. Various
studies have studied how to ensure the quality of knowledge
of such Q&A websites. A considerable number of prior
studies studied how to improve the quality of content on
such Q&A websites [11], [15], [22], [24], [30], [31], [37],
[38]. For example, Wang et al. observe that edits on Stack
Overflow answers improve the quality of such answers
(e.g., fixing bugs in code snippets) [31]. Similarly, our
findings suggest that in-place edits improve the quality of
bug reports which are expressed as questions on Stack

17

Exchange, e.g., adding/correcting/clarifying essential bug-
related information. In addition, researchers conducted stud-
ies on such Q&A websites to extract software engineering
related knowledge, e.g., code search and code reuse [1],
[3], [25], [28], [34], comment generation [23], [33] and
developer discussions [5], [18].

Different from existing studies which focus on study-
ing the quality of technical Q&A websites and leveraging
the knowledge from technical Q&A websites, our study
provides insights into how to leverage the unique features
of technical Q&A websites to improve the traditional bug
management systems.

8 CONCLUSION

In this paper, we study how three unique features, namely,
the in-place editing feature, the answering and commenting
features, and the voting feature are used in the Stack Ex-
change bug management system. We find that: 1) 57% of the
edits improved the quality of bug reports, such as adding/-
correcting/clarfying essential bug-related information (e,g.,
observed behavior and environment information). 2) The
commenting and answering features are used differently,
i.e., commenting on a bug report provides an avenue for
discussing bug-related information, while answering offers
an avenue for providing the solution and explaining the
causes of those bugs. 3) Most of the downvotes on bug
reports were made due to disagreement about whether the
reported “bug” is a real bug and the low quality of bug
reports.

Based on our analysis, we offer the following sug-
gestions: 1) Traditional bug management systems should
consider incorporating the in-place editing and the roll-back
features to avoid long hard-to-follow threads that are associ-
ated with bug reports. 2) Bug management systems should
consider incorporating the answering and commenting fea-
tures that can help better structure discussions about bugs
and their resolution, however clear guidelines regarding
where to contribute (e.g., answers or comments) needs to
be provided. 3) Downvoting provides a corrective feedback
to bug reporters. While Stack Exchange does not employ a
mechanism to explain the reasons for downvotes, we suggest
downvotes should be accompanied with an explanation.
Such an explanation can help in improving the bug report,
provide feedback and help novice users to learn how to write
a good bug report.
Acknowledgement This research is supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).

REFERENCES
[1] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,

“CAPS: a supervised technique for classifying stack overflow posts con-
cerning api issues,” Empirical Software Engineering, vol. 25, pp. 1493–
1532, 2019.

[2] D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, “Analysis and detection of
information types of open source software issue discussions,” in Proc. of the
41st IEEE/ACM International Conference on Software Engineering, 2019,
pp. 454–464.

[3] S. Azad, P. C. Rigby, and L. Guerrouj, “Generating api call rules from
version history and stack overflow posts,” ACM Transactions on Software
Engineering and Methodology, vol. 25, no. 4, p. 22, 2017.

[4] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug triaging:
Leveraging Q&A platforms for bug assignment,” in Proc. of the Interna-
tional Conference on Fundamental Approaches to Software Engineering,
2016, pp. 231–248.

[5] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical Soft-
ware Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmer-
mann, “Quality of bug reports in eclipse,” in Proc. of the OOPSLA Workshop
on Eclipse Technology eXchange, 2007, pp. 21–25.

[7] ——, “What makes a good bug report?” in Proc. of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2008,
pp. 308–318.

[8] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical
analysis of bug reports and bug fixing in open source android apps,” in
Proc. of the 17th European Conference on Software Maintenance and
Reengineering, 2013, pp. 133–143.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in
bug reports: improving cooperation between developers and users,” in Proc.
of the ACM Conference on Computer Supported Cooperative Work, 2010,
pp. 301–310.

[10] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descriptions,”
in Proc. of the 11th Joint Meeting on Foundations of Software Engineering,
2017, pp. 396–407.

[11] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proactive policy
assurance of post quality in community Q&A sites,” in Proc. ACM Hum.-
Comput. Interact., vol. 2, no. CSCW, pp. 33:1–33:22, Nov. 2018.

[12] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in Proc. of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 82–91.

[13] J. Cheng, C. Danescu-Niculescu-Mizil, and J. Leskovec, “How community
feedback shapes user behavior,” in Proc. of the Eighth International AAAI
Conference on Weblogs and Social Media, 2014.

[14] T. Dal Sasso, A. Mocci, and M. Lanza, “What makes a satisficing bug
report?” in Proc. of the IEEE International Conference on Software Quality,
Reliability and Security, 2016, pp. 164–174.

[15] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste on
android application security,” in Proc. of the IEEE Symposium on Security
and Privacy, 2017, pp. 121–136.

[16] A. Fishbach, T. Eyal, and S. R. Finkelstein, “How positive and negative
feedback motivate goal pursuit,” Social and Personality Psychology Com-
pass, vol. 4, no. 8, pp. 517–530, 2010.

[17] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Proc.
of the 22nd IEEE/ACM International Conference on Automated Software
Engineering, 2007, pp. 34–43.

[18] Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart: distilling
technology differences from crowd-scale comparison discussions.” in Proc.
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 214–224.

[19] D. Ilgen and C. Davis, “Bearing bad news: Reactions to negative perfor-
mance feedback,” Applied Psychology, vol. 49, no. 3, pp. 550–565, 2000.

[20] S. Just, R. Premraj, and T. Zimmermann, “Towards the next generation of
bug tracking systems,” in Proc. of the IEEE symposium on Visual languages
and Human-Centric computing, 2008, pp. 82–85.

[21] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in Proc.
of the 25th IEEE International Conference on Software Analysis, Evolution
and Reengineering, 2018, pp. 118–129.

[22] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Secure
coding practices in java: challenges and vulnerabilities,” in Proc. of the 40th
IEEE/ACM International Conference on Software Engineering, 2018, pp.
372–383.

[23] D. Movshovitz-Attias and W. W. Cohen, “Natural language models for
predicting programming comments,” in Proc. of the 51st Annual Meeting
of the Association for Computational Linguistics, 2013, pp. 35–40.

[24] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[25] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,” in
Proc. of the IEEE International Conference on Software Maintenance and
Evolution, 2018, pp. 473–484.

[26] K. M. Rejaul, “Key features recommendation to improve bug reporting,” in
Proc. of the International Conference on Software and System Processes,
2019, pp. 1–4.

[27] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long
lived bugs,” in Proc. of the IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, 2014, pp. 144–153.

[28] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and Y. Le Traon,
“Augmenting and structuring user queries to support efficient free-form

18

code search,” Empirical Software Engineering, vol. 23, no. 5, pp. 2622–
2654, 2018.

[29] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, “On the unreliability of bug
severity data,” Empirical Software Engineering, vol. 21, no. 6, pp. 2298–
2323, 2016.

[30] S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the factors for
fast answers in technical Q&A websites,” Empirical Software Engineering,
vol. 23, no. 3, pp. 1552–1593, 2018.

[31] S. Wang, T.-H. P. Chen, and A. E. Hassan, “How do users revise answers
on technical Q&A websites? a case study on stack overflow,” IEEE Trans-
actions on Software Engineering, pp. 1–1, 2018.

[32] T. Wang, K. C. Wang, F. Erlandsson, S. F. Wu, and R. Faris, “The influence
of feedback with different opinions on continued user participation in on-
line newsgroups,” in Proc. of the IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2013, pp. 388–395.

[33] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and answer
sites for automatic comment generation,” in Proc. of the 28th IEEE/ACM
International Conference on Automated Software Engineering, 2013, pp.
562–567.

[34] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers utilize
source code from stack overflow?” Empirical Software Engineering, pp. 1–
37, 2018.

[35] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in Proc. of the 19th Working Conference
on Reverse Engineering, 2012, pp. 225–234.

[36] H. Zhang, S. Wang, T. Chen, and A. E. Hassan, “Reading answers on stack
overflow: Not enough!” IEEE Transactions on Software Engineering, pp.
1–1, 2019.

[37] H. Zhang, S. Wang, T. P. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on stack overflow,” IEEE Transactions on Soft-
ware Engineering, pp. 1–1, 2019.

[38] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are code
examples on an online q&a forum reliable?: a study of API misuse on
stack overflow,” in Proc. of the 40th International Conference on Software
Engineering, 2018, pp. 886–896.

[39] M. Zhou and A. Mockus, “Who will stay in the floss community? modeling
participant’s initial behavior,” IEEE Transactions on Software Engineering,
vol. 41, no. 1, pp. 82–99, 2015.

[40] W. Zou, X. Xia, W. Zhang, Z. Chen, and D. Lo, “An empirical study
of bug fixing rate,” in Proc. of the 39th Annual Computer Software and
Applications Conference, 2015, pp. 254–263.

Aaditya Bhatia Aaditya is currently work-
ing towards his Ph.D. and is a M.Sc. grad-
uate from Software Analytics and Intelli-
gence, Queen’s University, Canada. His
research interests include machine learn-
ing, software analytics, data warehous-
ing, natural language processing, and
mining software repositories.

Shaowei Wang Shaowei Wang is an as-
sistant professor in the Department of
Computer Science at University of Man-
itoba. He obtained his Ph.D. from Singa-
pore Management University and his BSc
from Zhejiang University. His research in-
terests include software engineering, ma-
chine learning, data analytics for software
engineering, automated debugging, and
secure software development. His work
has been published at premier software

engineering venues such as the TSE, EMSE, ASE, and ICSME.
He is one of four recipients of the 2018 distinguished reviewer
award for the Springer EMSE (SE’s highest impact journal). More
information at: https://sites.google.com/site/wswshaoweiwang/.

Muhammad Asaduzzaman Muhammad
Asaduzzaman is a postdoctoral research
fellow in the Software Analysis and Intelli-
gence Lab (SAIL) at Queen’s University in
Kingston, Canada. His research interests
include software maintenance and evo-
lution, mining software repositories, pro-
gram comprehension, reverse engineer-
ing, and recommendation systems. His
work has been published at premier soft-
ware engineering venues such as the

EMSE, ASE, ICSME, and MSR. Before moving to Canada,
he studied at Khulna University in Bangladesh, where he re-
ceived his BSc (2006). He completed his M.Sc. (2012) and
Ph.D. (2018) from the Department of Computer Science at the
University of Saskatchewan in Saskatoon, Canada. More about
Muhammad can be read on his website: https://muhammad-
asaduzzaman.com.

Ahmed E. Hassan Ahmed E. Hassan is
an IEEE Fellow, an ACM SIGSOFT Influ-
ential Educator, an NSERC Steacie Fel-
low, the Canada Research Chair (CRC)
in Software Analytics, and the NSER-
C/BlackBerry Software Engineering Chair
at the School of Computing at Queen’s
University, Canada. His research inter-
ests include mining software repositories,
empirical software engineering, load test-
ing, and log mining. He received a PhD

in Computer Science from the University of Waterloo. He spear-
headed the creation of the Mining Software Repositories (MSR)
conference and its research community. He also serves/d on the
editorial boards of IEEE Transactions on Software Engineering,
Springer Journal of Empirical Software Engineering, and PeerJ
Computer Science. Contact ahmed@cs.queensu.ca. More infor-
mation at: http://sail.cs.queensu.ca/.

19

https://sites.google.com/site/wswshaoweiwang/
ahmed@cs.queensu.ca
http://sail.cs.queensu.ca/

	Introduction
	Background
	Bug Reporting at Stack Exchange
	Community Contributions to Bug Reports

	Research Questions & Data Collection
	Research Questions
	Data Collection

	Research Questions and Results
	RQ1: Does the in-place editing feature help improve the quality of bug reports on the Stack Exchange bug management system?
	Quantitative Analysis
	Qualitative Analysis

	RQ2: Is the commenting feature used differently from the answering feature on the Stack Exchange bug management system?
	Quantitative Analysis
	Qualitative Analysis

	RQ3: How do users leverage the voting feature of the Stack Exchange bug management system?
	Quantitative Analysis
	Qualitative Analysis

	Discussion
	Studying Mislabeled Issues Reports
	The Implications of our Findings

	Threats to Validity
	Related Work
	Studying and Improving the Bug Reporting Process
	Leveraging Crowdsourcing to Support Bug Management Activities
	Studying Technical Q&A Websites

	Conclusion
	References
	Biographies
	Aaditya Bhatia
	Shaowei Wang
	Muhammad Asaduzzaman
	Ahmed E. Hassan

