
Noname manuscript No.
(will be inserted by the editor)

Real World Projects, Real Faults: Evaluating
Spectrum Based Fault Localization Techniques on
Python Projects

Ratnadira Widyasari · Gede Artha
Azriadi Prana · Stefanus Agus Haryono ·
Shaowei Wang · David Lo

Received: date / Accepted: date

Abstract Spectrum Based Fault Localization (SBFL) is a statistical approach
to identify faulty code within a program given a program spectra (i.e., records
of program elements executed by passing and failing test cases). Several SBFL
techniques have been proposed over the years, but most evaluations of those
techniques were done only on Java and C programs, and frequently involve
artificial faults. Considering the current popularity of Python, indicated by
the results of the Stack Overflow survey among developers in 2020, it be-
comes increasingly important to understand how SBFL techniques perform on
Python projects. However, this remains an understudied topic. In this work,
our objective is to analyze the effectiveness of popular SBFL techniques in real-
world Python projects. We also aim to compare our observed performance on
Python to previously-reported performance on Java. Using the recently-built
bug benchmark BugsInPy as our fault dataset, we apply five popular SBFL
techniques (Tarantula, Ochiai, OP, Barinel, and DStar) and analyze their per-
formances. We subsequently compare our results with results from Java and
C projects reported in earlier related works.

We find that 1) the real faults in BugsInPy are harder to identify using
SBFL techniques compared to the real faults in Defects4J, indicated by the
lower performance of the evaluated SBFL techniques on BugsInPy; 2) older
techniques such as Tarantula, Barinel, and Ochiai consistently outperform
newer techniques (i.e., OP and DStar) in a variety of metrics and debugging
scenarios; 3) claims in preceding studies done on artificial faults in C and Java
(such as “OP outperforms Tarantula”) do not hold on Python real faults; 4)

Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus Agus Haryono, David Lo
School of Computing and Information Systems, Singapore Management University
80 Stamford Rd, Singapore 178902
E-mail: {ratnadiraw.2020,arthaprana.2016,stefanusah,davidlo}@smu.edu.sg

Shaowei Wang
Department of Computer Science, University of Manitoba, Winnipeg, Canada
E-mail: shaowei.wang@umanitoba.ca

2 Ratnadira Widyasari et al.

lower-performing techniques can outperform higher-performing techniques in
some cases, emphasizing the potential benefit of combining SBFL techniques.
Our results yield insight into how popular SBFL techniques perform in real
Python faults and emphasize the importance of conducting SBFL evaluations
on real faults.

Keywords Spectrum-Based Fault Localization · Python · testing and
debugging · empirical study.

1 Introduction

Software debugging is an important but expensive part of software evolu-
tion (Planning, 2002; Wright and Zia, 2011). It becomes both more challeng-
ing and indispensable as modern software becomes increasingly complex and
ubiquitous, with faults potentially incurring large economic cost1 or even loss
of human life (Wong et al., 2010). In the debugging process, developers often
spend significant time and effort to discover the parts of source code respon-
sible for a fault (Vessey, 1985), i.e. fault localization. This has motivated the
creation of various automated techniques and tools to aid fault localization
over the past few decades. Automated fault localization techniques use a pro-
gram’s passing and failing test cases to narrow down the set of most suspicious
locations in the program, which the developers can then manually inspect. By
enabling developers to focus their efforts on a small portion of the program
code, such techniques can save developers’ time and increase the efficiency of
the overall software development process (Xia et al., 2016). The automated
fault localization technique especially the spectrum-based fault localization
also usually use by automated program repair tools to identify the potential
fault location. For example, Ochiai (Abreu et al., 2006) SBFL technique have
been used in several automated program repair tool such as SimFix(Jiang
et al., 2018), PraPR(Ghanbari et al., 2019), and CapGen(Wen et al., 2018).

Several types of approaches have been proposed for automated fault local-
ization, such as spectrum-based (Abreu et al., 2006; Jones et al., 2001; Koca
et al., 2013; Renieres and Reiss, 2003; Wong et al., 2013), model-based (Abreu
and Van Gemund, 2009; Baah et al., 2010; Chaki et al., 2004; Könighofer
and Bloem, 2011), machine learning-based (Briand et al., 2007; Wong et al.,
2011), and many others (Bouillon et al., 2007; Gouveia et al., 2013; Hao et al.,
2009). In this work, we focus on Spectrum-Based Fault Localization (SBFL),
which uses statistical formulas to measure the suspiciousness of program units
based on the program’s execution traces. Execution traces, also called program
spectra, contain details on failing and passing test cases, along with some in-
formation regarding parts of the program executed by these test cases such as
executed statements. The suspiciousness scores computed from program spec-
tra are then used to generate a ranked list of program elements that are most
likely to be responsible for the fault.

1 http://www.abeacha.com/NIST press release bugs cost.htm

http://www.abeacha.com/NIST_press_release_bugs_cost.htm

Evaluating SBFL Techniques on Python Projects 3

Spectrum-Based Fault Localization techniques have been gaining research
attention in the past decade (Wong et al., 2016), and a number of studies
have also evaluated the effectiveness of various techniques in this category (Lo
et al., 2010; Renieres and Reiss, 2003; Xie et al., 2013; Le et al., 2013). How-
ever, the issue regarding many existing evaluations stems from the common
usage of artificial faults. Many existing studies use a dataset that comprises
entirely or mostly of artificial faults. In view of this, Pearson et al. (2017) con-
ducted a study that uses two sets of data related to 6 real-world projects (one
set comprising artificial faults and another comprising real faults) to evaluate
claims made by a number of earlier works. They found that a fault localiza-
tion technique’s performance on artificial faults is not a useful predictor of its
performance on real faults.

Beyond common usage of artificial faults in existing studies, there is also a
knowledge gap stemming from the evolving landscape of software development.
As of the time of writing, evaluations on fault localization techniques’ effec-
tiveness are typically done on Java or C projects. However, other languages
have gained popularity in recent years. As an example, the StackOverflow
2020 survey2 ranks Python above Java and C in popularity, and Python is
also used in a wide range of software including scientific computing libraries,
web applications, and software engineering tools. However, to the best of our
knowledge, there has been no study on the effectiveness of various fault local-
ization techniques in Python programs.

The inconsistency between SBFL evaluation results from studies done on
artificial faults versus that done on real-world Java faults, and the lack of
evaluation of SBFL on currently popular languages beyond Java and C, poses
an issue that needs to be addressed to provide researchers and practitioners
alike with a more accurate view of the techniques’ effectiveness. One way to
address this is through replication studies, which can help increase accuracy
and confidence in the original experiment’s findings (Santos et al., 2020; Chen
et al., 2019). Lindsay and Ehrenberg argue that in addition to validating the
findings, replications are also needed to identify the range under which the
findings hold as well as the exceptions (Lindsay and Ehrenberg, 1993). In
particular, an independent replication which only shares prior experiments’
research objectives but varies one or more major aspects (Shull et al., 2008)
will help in providing researchers and practitioners a more realistic assessment
of the findings since such replications can demonstrate if “an effect is robust
to changes with subjects, settings, and materials” (Kitchenham, 2008).

In view of the above, we believe it is important to conduct an indepen-
dent replication of the evaluation of SBFL techniques’ effectiveness using real
faults in real-world Python projects. We perform an evaluation on 5 popular
SBFL techniques (Tarantula, Ochiai, OP, Barinel, and DStar) (Wong et al.,
2016; Pearson et al., 2017) on a recent Python benchmark BugsInPy dataset
by Widyasari et al. (2020), containing 17 real-world Python projects that com-
prise of 493 real faults. We aim to answer the following research questions:

2 https://insights.stackoverflow.com/survey/2020

https://insights.stackoverflow.com/survey/2020

4 Ratnadira Widyasari et al.

– RQ-1: Does the effectiveness of SBFL techniques on Python projects
(in BugsInPy) differ from that on Java projects (in Defects4J)?
We compare the performance of five popular SBFL techniques (Pearson
et al., 2017; Wong et al., 2016) on Defects4J (Just et al., 2014a) that
were evaluated by Pearson et al. (2017) with the results on BugsInPy
(Widyasari et al., 2020). We use EXAM score (Wong et al., 2008) and
Top-k (Pearson et al., 2017) to compare the performance of the techniques,
and find that faults in BugsInPy are harder to identify using SBFL than
faults in Defects4J, indicated by the lower performance result.

– RQ-2: How effective are popular SBFL techniques on real faults
of Python projects (in BugsInPy)?
To answer RQ-2, we run five popular SBFL techniques on BugsInPy dataset
and evaluate the techniques’ performance on several metrics including
EXAM score (Wong et al., 2008), FLT rank (Pearson et al., 2017), and
improvement (Horváth et al., 2020). We subsequently conduct a statisti-
cal analysis on the result. For the EXAM score and FLT ranking, we find
Tarantula to be the best-performing technique, but with a statistically in-
significant difference from Barinel and Ochiai. We also find that the results
of Top-K and improvement metrics are inline with the results on metrics
EXAM score and FLT rank. Compared to the result of Pearson et al.
(2017) where DStar, Ochiai, Barinel, and Tarantula do not have signifi-
cant differences, our results show that DStar is significantly different with
Ochiai, Barinel, and Tarantula.

– RQ-3: Are the findings of previous studies applicable to Python
projects (in BugsInPy)?
We examine the relative performance of different pairs of SBFL techniques
and compare our result with claims of the preceding studies (such as “OP

outperforms Tarantula” and “Barinel outperforms Ochiai”). We use 7 find-
ing statements from previous studies that are checked by Pearson et al.
(2017). We want to know whether these statements hold on Python real
faults. Our findings are in line with findings of prior study by Pearson
et al. (2017), where the performance differences between pairs of examined
SBFL techniques on real faults do not match the findings of preceding
studies done using artificial faults (Le et al., 2013; Abreu et al., 2009b; Le
et al., 2015b; Naish et al., 2011a; Wong et al., 2016; Xuan and Monperrus,
2014b; Moon et al., 2014; Ju et al., 2014).

In summary, our contributions are as follows:

1. We investigate the effectiveness of 5 popular SBFL techniques
on real faults in Python projects (in BugsInPy). Our results yield
insight into these techniques’ effectiveness on real Python faults, which can
aid both researchers and practitioners considering Python’s popularity.

2. We examine the generalizability of findings of previous studies on
Python real-world fault dataset. Our analysis of the findings, many of
which are based on experiments on artificial faults, emphasizes the impor-
tance of conducting SBFL evaluations on real faults. Further, it can also

Evaluating SBFL Techniques on Python Projects 5

motivate further research into the difference between the characteristics
of artificial faults and that of real faults, which will be useful to aid the
generation of better artificial faults.

3. We examine how different the performance of SBFL techniques
on Python real faults (in BugsInPy) compares to the Java real
faults (in Defects4J). Our results from this aspect of our work highlight
the importance of more research into differences between characteristics of
common faults in popular languages.

4. We take into account real-world problems such as types of debug-
ging scenarios and types of faults in the evaluation. Debugging sce-
nario types refer to situations where there can be more than one statement
associated with a fault (i.e. multi-statement faults). We have three differ-
ent debugging scenarios, which are worst-case, average-case, and best-case
scenarios. Our results demonstrate that while rankings of the techniques
are generally consistent across scenarios, even techniques with lower overall
performance can outperform “better” techniques in some cases, indicating
the need for additional research into the interaction between fault charac-
teristics and performance of different SBFL techniques.

The rest of this paper is organized as follows: Section 2 summarizes previous
works related to this study. Section 3 provides more details on the dataset we
use as well as our empirical study methodology. Section 4 reports the result of
our analyses. Section 5 provides discussion as well as implications of our results
for practitioners and researchers. In Section 5 we also discusses the threats to
our study’s validity. Finally, Section 6 concludes this paper and presents future
work.

2 Related Work

2.1 Spectrum-Based Fault Localization

Fault localization has been a hot research topic for several decades. Among
the categories of approaches, Spectrum-Based Fault Localization (SBFL) has
been one of the most popular and actively researched (Wong et al., 2016).
Over the past decades, numerous variants of SBFL techniques have been pro-
posed (Debroy et al., 2010; Renieres and Reiss, 2003; Jones et al., 2001; Abreu
et al., 2006; Naish et al., 2011b; Abreu et al., 2009b; Wong et al., 2013). There
has also been attempts to combine SBFL with other approaches, such as by Ju
et al. (2014).

Beyond proposed techniques, multiple studies have been conducted to in-
vestigate and compare the effectiveness of various SBFL techniques under
different settings. For example, Jones and Harrold (2005) evaluated the per-
formance of Tarantula by comparing it against four other techniques. Kim
and Lee (2014) evaluated 32 SBFL techniques using Siemens Test Suite and
a fault localization tool they developed (SKKU-FL). Another example is a
study by Le et al. (2013) that attempts to evaluate SBFL methods using a

6 Ratnadira Widyasari et al.

dataset comprising real world 199 faulty versions of Java and C projects, in-
cluding 164 versions with artificial faults and 35 with real faults. A limitation
of Le et al.’s work, as well as many other evaluations of SBFL techniques, is
their usage of datasets that comprise mostly or entirely of artificial faults. This
common limitation means evaluation of fault localization techniques’ ability to
find real faults is not sufficiently studied. In view of this, Pearson et al. (2017)
conducted an evaluation of a range of fault localization techniques, including
SBFL, using 310 real faults from Defects4J (Just et al., 2014b) in addition to
2,995 artificial faults generated using Major mutation framework tool (Just,
2014). By comparing 7 SBFL technique pairs (e.g., Ochiai better than Taran-
tula, Barinel better than Ochiai, etc.) from previous studies, they found that,
unlike results of prior evaluations that were done using artificial faults, the
results from an evaluation using real faults differ.

Pearson et al. focus on real world projects written in Java and C. As the
Python language becomes increasingly popular, there is a need to evaluate the
effectiveness of SBFL on real faults of Python projects. To fill this gap, we
select 5 popular SBFL techniques that have also been examined by Pearson
et al. (2017) on real faults in Java projects and investigate their effectiveness
on real faults in Python projects. We then examine whether the techniques’
effectiveness of SBFL on Python projects differs from that on C/Java projects
(see details in Section 3). Using the same Python dataset, we also investi-
gate the validity of 7 comparisons SBFL techniques that were investigated
by Pearson et al. (2017) on Java.

2.2 Faults Benchmark

There have been a number of attempts to build faults benchmark datasets.
One of the earliest is the Siemens test suite (Hutchins et al., 1994), which
contains 130 faulty versions of 7 C programs generated by manually seeding
them with bugs. Other efforts include BugBench (Lu et al., 2005) that con-
tains faults from 17 open-source C and C++ projects, BegBunch (Cifuentes
et al., 2009) that comprises “Accuracy” and “Scalability” suite of faults ob-
tained from several open-source C and C++ projects, ManyBugs (Le Goues
et al., 2015) that contains 185 defects from 9 large open-source C projects, and
Bugs.jar (Saha et al., 2018) that contains 1,158 faults from 8 popular open-
source Java projects. Currently, one of the most popular faults benchmark is
Defects4J (Just et al., 2014b); its initial version contains 357 real faults from
5 real-world Java projects. There are some appealing aspects of Defects4J
that make it popular, such as 1) it is constructed from real-world projects; 2)
its faults are reproducible, and each is accompanied with a failing test case
that passes once the fault is fixed; 3) the faults are isolated, and the code
changes that fix the faults do not contain irrelevant changes; 4) it includes a
set of scripts that help the developer to get each fault from a project. This
dataset has been popularly used for controlled testing and debugging stud-
ies (Sobreira et al., 2018; Pearson et al., 2017). There has also been Bugswarm

Evaluating SBFL Techniques on Python Projects 7

by Tomassi et al. (2019) that contains pairs of failing and passing builds of
Java and Python projects encapsulated in Docker images. However, an eval-
uation by Durieux and Abreu (2019) concluded that only a small percentage
of its content is suitable for evaluating automated program repair and fault
localization techniques due to issues such as the fault not being isolated. They
also cited the need to download Docker containers for individual faults as
another downside since it incurs high execution and storage cost on consumer-
grade hardware. More recently, there is a faults benchmark on Python called
BugsInPy (Widyasari et al., 2020), which is inspired by Defects4J. BugsInPy
dataset is curated by hand to ensure that the faults are reproducible and iso-
lated. BugsInPy comprises 493 faults from 17 real-world GitHub projects that
have at least 10,000 stars, and like Defects4J, require relatively low overhead
to retrieve each fault. Therefore, for this work, we choose BugsInPy to evaluate
the SBFL techniques.

3 Dataset and Methodology

3.1 Fault Dataset

For this study, we use the BugsInPy dataset from Widyasari et al. (2020).
BugsInPy is a dataset comprising 493 real faults from 17 real-world Python
projects, with each faulty program version comes together with the fixed ver-
sion. Compared to Defects4J which has been used as the baseline dataset in
many studies, BugsInPy is collected from a higher number of projects (i.e.,
17 projects in BugsInPy compared to 6 projects in Defects4J). Moreover, the
projects that are used in BugsInPy are popular GitHub projects with a high
number of stars (i.e., more than 10,000 stars). Note that a project with a high
number of starts usually corresponds to a high quality project (Ren et al.,
2020). The projects in BugsInPy also span multiple domains including web
framework, developer tool, and machine learning tool, which we believe will
improve the generalizability of our results. As BugsInPy contains real faults,
the erroneous portion of the program code may span multiple statements.
Table 1 shows the statistics of the dataset.

3.2 Experiments Design

3.2.1 Research Questions

In this study, we seek to answer the following research questions:

– RQ-1: Does the effectiveness of SBFL techniques on Python projects
(in BugsInPy) differ from that on Java projects (in Defects4J)?
Previous study by Pearson et al. (2017) has evaluated several popular SBFL
techniques on a dataset of Java projects. We want to investigate whether
the performance of SBFL techniques on Python projects aligns with their

8 Ratnadira Widyasari et al.

Table 1 Projects and number of real faults available in a version of BugsInPy as of 19 June
2021.

Project Faults LoC Test LoC # Tests # Stars
ansible/ansible 18 207.3K 128.8K 20,434 43.6K
cookiecutter/cookiecutter 4 4.7K 3.4K 300 12.2K
cool-RR/PySnooper 3 4.3K 3.6K 73 13.5K
explosion/spaCy 10 102K 13K 1,732 16.6K
huge-success/sanic 5 14.1K 8.1K 643 13.9K
jakubroztocil/httpie 5 5.6K 2.2K 309 47K
keras-team/keras 45 48.2K 17.9K 841 48.6K
matplotlib/matplotlib 30 213.2K 23.2K 7,498 11.6K
nvbn/thefuck 32 11.4K 6.9K 1,741 53.9K
pandas-dev/pandas 169 292.2K 196.7K 70,333 25.4K
psf/black 15 96K 5.8K 142 16.4K
scrapy/scrapy 40 30.7K 18.6K 2,381 37.4K
spotify/luigi 33 41.5K 20.7K 1,718 13.4K
tiangolo/fastapi 16 25.3K 16.7K 842 15.3K
tornadoweb/tornado 16 27.7K 12.9K 1,160 19.2K
tqdm/tqdm 9 4.8K 2.3K 88 14.9K
ytdl-org/youtube-dl 43 124.5K 5.2K 2,367 67.3K
Total 493 1253.5K 486K 112,602 470.2K

findings on Java. This is necessary since no previous study has evaluated
SBFL techniques on Python fault dataset even though Python is currently
one of the most popular languages3. Identifying the potential differences
in SBFL techniques’ performance on BugsInPy versus Defects4J can shed
more light into this unexplored research problem.

– RQ-2: How effective are popular SBFL techniques on real faults
of Python projects (in BugsInPy)?
Currently, the effectiveness of SBFL techniques in Python is still unknown
as there has been no attempt to evaluate the performance of SBFL tech-
niques in Python. We analyze how popular SBFL techniques perform in
the BugsInPy dataset, and whether there is a “best” technique for use
on real Python faults. Answering this question will help researchers and
practitioners to characterize SBFL techniques’ effectiveness in Python and
identify potential areas of improvement.

– RQ-3: Are the findings of previous studies applicable to Python
projects (in BugsInPy)?
The 7 finding statements from prior works that were checked by Pear-
son et al. (2017) (for example, “OP outperforms Tarantula” and “Barinel
outperforms Ochiai”) are mostly made through experiments that use arti-
ficial faults to evaluate the SBFL techniques’ performance. These finding
statements are also made using Java or C projects. In this RQ-3, we use
Python’s real faults to evaluate these statements. Validating these state-
ments is important as the previous study by Pearson et al. (2017) found
that the results of artificial faults on Java do not portray the results of the

3 https://insights.stackoverflow.com/survey/2020#technology-most-loved-dread

ed-and-wanted-languages-wanted

https://insights.stackoverflow.com/survey/2020##technology-most-loved-dreaded-and-wanted-languages-wanted
https://insights.stackoverflow.com/survey/2020##technology-most-loved-dreaded-and-wanted-languages-wanted

Evaluating SBFL Techniques on Python Projects 9

real faults. Whether the same applies to Python projects is still unknown.
As the Python language becomes more and more popular, there is an in-
creasing need to investigate the validity of these statements on Python
projects.

3.2.2 SBFL techniques

SBFL techniques exploit a program’s test case results as well as their cor-
responding code coverage information to identify program units (e.g., state-
ments, functions, etc.) that are most likely to be responsible for a failure.
Many variants of SBFL techniques have been proposed, and 5 of the most
well-studied techniques (Wong et al., 2016) are Tarantula (Jones et al., 2001),
Ochiai (Abreu et al., 2006), OP (Naish et al., 2011b), BARINEL (Abreu et al.,
2009b), and DStar (Wong et al., 2013). In this study, we investigate whether
the findings found by Pearson et al. (2017) for Java can be replicated for other
programming languages. For this purpose, we choose to evaluate these 5 SBFL
techniques as well on Python projects (BugsInPy). These techniques are pop-
ular and also used in the previous study by Pearson et al. (2017) to evaluate
SBFL on real faults of Java projects.

The formulas for the techniques are explained below, using the following
notations: nf denotes the number of total failing test cases, nf (s) denotes the
number of failing test cases that execute statement s, np denotes the number
of total passing test cases, and np(s) denotes the number of passing test cases
that execute statement s.

Tarantula(s) =

nf (s)
nf

nf (s)
nf

+
np(s)
np

Ochiai(s) =
nf (s)√

nf .(np(s) + nf (s))

OP(s) = nf (s)− np(s)

np + 1

BARINEL(s) = 1− np(s)

np(s) + nf (s)

DStar(s) =
nf (s)2

np(s) + (nf − nf (s))

3.2.3 Methodology

RQ-1. The overview of our methodology to answer RQ-1 is shown in Fig-
ure 1. We first obtain the statement coverage from the buggy version in the

10 Ratnadira Widyasari et al.

Fixed
 version

Buggy
version

BugsinPy Dataset

Running
test cases

Test
Results

SBFL
techniques

Evaluating
SBFL

techniques

Ranked
Statements

Evaluation Metrics
EXAM Score (Wong, 2008) [RQ-1;2]
Top-k Rank. (Le et al., 2015a) [RQ-1;2]
Wasted Effort (Zhang et al., 2017) [RQ-1]
Tournament Rank. (Pearson, 2016) [RQ-2]
FLT Rank. (Pearson, 2016) [RQ-2]
Improvement (Horvath, 2020) [RQ-2]

Fig. 1 Workflow of RQ-1 and RQ-2

BugsInPy dataset using coverage.py4, which is one of the most popular third-
party coverage tools according to the official Python Developer’s Guide5. From
the coverage and test results, we obtain information required to apply SBFL,
such as numbers of failing and passing test cases that execute a given state-
ment, and obtain suspiciousness score for the statement.

In the scenario when some statements share the same suspiciousness score,
we assign the average rank (Steimann et al., 2013; Pearson et al., 2017) to
these statements which are calculated by (n

2) + (k− 1) where n is the number
of statements that have same suspiciousness score and k is the best rank of
the statement (e.g., if the statement a, b, and c have the suspiciousness score
1, statements a, b, c will have rank (3

2)+(1−1) = 1.5). Since in our dataset it
is possible to have a multi-statement fault, we evaluate the fault localization
techniques using three debugging scenarios following the settings considered
by Pearson et al. (2017):

– Best-case: Find any one of the faulty statements.
– Worst-case: Find all faulty statements.
– Average-case: Find 50% (half) of the faulty statements. In case of where

the number of faulty statements is odd, we round it down, i.e. if the number
of faulty statements is 7, this scenario requires 3 of them to be found.

We ran all test cases for every project in the dataset, with the exception of
pandas. This is because pandas has a clear division of unit tests by component,
which means localization can be performed by running a set of tests related
to a specific component, instead of running the entire pandas test suite. For
example, if failure occurs in a test for component io, we run tests only for
component io.

Metrics that we used to get performance of SBFL techniques for this RQ-
1 are mean EXAM score (Wong et al., 2008), Top-k (Le et al., 2015a), and
wasted effort (Xuan and Monperrus, 2014b). These metrics are used in all
three debugging scenarios we consider, i.e., best-case, worst-case, and average-
case. EXAM score (Wong et al., 2008) is one of the most popular metrics used
to evaluate the effectiveness of fault localization techniques. The EXAM score
shows the percentage of executable statements that need to be inspected until

4 https://coverage.readthedocs.io/en/coverage-5.1/
5 https://devguide.python.org/coverage/

https://coverage.readthedocs.io/en/coverage-5.1/
https://devguide.python.org/coverage/

Evaluating SBFL Techniques on Python Projects 11

it reaches the first faulty statement. The formula of EXAM score is defined
as follows:

EXAM Score =
Rank of the faulty statement

Total number of statement

EXAM score ranges from 0 to 1 (inclusive), with smaller score indicating the
better performance of a SBFL technique. As an illustration of the EXAM
score computation, consider the following suspiciousness score from five code
statements (s1, s2, s3, s4, and s5), which are 0.6, 0.7, 1.0, 0.5, and 0.8. Assume
that s2 is the faulty statement, the EXAM score will be 2

5 = 40%, since the
developer needs to inspect three statements (40% of the code base) to reach
the faulty one.

As the EXAM score relies on the number of total statements in the pro-
gram under study, a good EXAM score can still be achieved even if the faulty
statement is not listed among the top results for cases where the total number
statements are high. To mitigate this limitation of the EXAM score metric, we
also use the top-k metric to compare the result from the SBFL techniques in
Defects4J with the result of the best SBFL techniques in BugsInPy. This met-
ric choice is also motivated by findings of Parnin and Orso (2011) where the
absolute rank is more important than the percentage ranking. Top-k measures
how often the faulty statement is included in the highest-ranking k results, and
for this part of the analysis, we use k values of 5, 10, and 200. We choose to
include k=5 and k=10, since a survey with 386 practitioners done by Kochhar
et al. (2016) found that 73.58% and 98% of the practitioners only consider a
fault localization instance to be successful if the faulty statement appears in
the top 5 and 10 positions respectively. This is also supported by findings of
Parnin and Orso (2011) that highlight most programmers will move to tra-
ditional debugging when the faulty statements are not found in the first few
statements. We also utilized k=200 following the previous studies (Pearson
et al., 2017; Just et al., 2018) that also reported it for completeness-sake.
Another study (Long and Rinard, 2016) also found that automatic program
repair methods work best when the program only includes the top-200 suspi-
cious statements.

We also use wasted effort (Zhang et al., 2017) as one of the metrics. The
wasted effort represents the number of statements that need to be checked
before getting to the faulty statement. The smaller number of wasted effort
indicates a better performance of an SBFL technique. We use wasted effort
as it indicates how much effort that has been wasted as a consequence of the
inaccurate fault localization (He et al., 2020). Several previous studies (Xuan
and Monperrus, 2014a; He et al., 2020; Zhang et al., 2017) also used wasted
effort as their evaluation metrics.

After we obtain the results for both Defects4J and BugsInPy, we compare
their performance using Wilcoxon rank-sum test (Wilcoxon, 1992) to identify
statistically significant differences following previous work by Le et al. (2015a).
We use this statistical test for Top-k, wasted effort, and EXAM score metrics
for each considered SBFL technique. Following the work by Le et al. (2015a),
we also compute the effect size using Cliff’s d effect size (Cliff, 1993), with the

12 Ratnadira Widyasari et al.

following interpretation: negligible if d<0.147; small if d>=0.147, medium if
d>=0.33, and large if d>=0.474 Romano et al. (2006).
RQ-2. In RQ-2, we measure the effectiveness of popular SBFL techniques on
real faults in Python projects. While on RQ-1 we focus on the comparison
between datasets, our focus in RQ-2 is the comparison between SBFL tech-
niques. Following the work of Pearson et al. (2017), which uses code changes
in the fixed program version and suspiciousness ranking of the different state-
ments in the buggy version, we use the following metrics to rank the SBFL
techniques:

1. Mean EXAM Score
2. Mean FLT (Fault Localization Technique) Ranking (Pearson et al.,

2017): As we are examining 5 SBFL techniques, for every fault we rank the
SBFL techniques from 1 to 5 where 1 indicates the best technique while 5
indicates the worst technique. The FLT rank value is based on the rank of
fault for each technique. As an example, if fault X is ranked as number 1
in Tarantula, number 30 in Ochiai, number 2 in OP, number 20 in DStar,
and number 5 in Barinel, then, for fault X, the FLT rank for Tarantula,
OP, Barinel, DStar, and Ochiai is 1, 2, 3, 4, and 5 respectively. Afterward,
we calculate the average rank for each technique.

3. Tournament Ranking (Pearson et al., 2017): This ranking is computed
by comparing pairs of SBFL techniques to determine whether one of the
SBFL techniques gives a better result than the other. This is run for both
EXAM score and FLT ranking, using the following approach: For each pair
of SBFL techniques whose difference is statistically significant, as exam-
ined using Wilcoxon rank-sum test (Wilcoxon, 1992), we assign 1 point to
the winner. We subsequently rank the techniques based on the number of
points.

Beyond this, we further analyze the result of SBFL techniques using two
additional metrics: top-k and improvement. For the top-k metric, we use the
same k values as in RQ-1, i.e. 5, 10, and 200. The improvement metric is
designed based on the study by Horváth et al. (2020). We consider 6 cases of
improvement:

– [201,∞]→ [11,200]: SBFL technique A ranks a faulty statement at a posi-
tion larger than 200 and SBFL technique B ranks a faulty statement in a
position between 11 to 200.

– [201,∞]→ [6,10]: SBFL technique A ranks a faulty statement at a posi-
tion larger than 200 and SBFL technique B ranks a faulty statement in a
position between 6 to 10.

– [201,∞]→ [1,5]: SBFL technique A ranks a faulty statement at a position
larger than 200 and SBFL technique B ranks a faulty statement in top-5.

– [11,200]→ [6,10]: SBFL technique A ranks a faulty statement at a position
between 11 to 200 and SBFL technique B ranks the faulty statement in a
position between 6 to 10.

– [11,200]→ [1,5]: SBFL technique A ranks a faulty statement at a position
between 11 to 200 and SBFL technique B ranks a faulty statement in top-5.

Evaluating SBFL Techniques on Python Projects 13

– [6,10]→ [1,5]: SBFL technique A ranks a faulty statement at a position
between 6 to 10 and SBFL technique B ranks a faulty statement in top-5.

For this improvement metric, we only consider the faulty statement in the
last position. For example, if in the average-case scenario there are 2 faulty
statements in positions 5 and 20 of the result, we use the fault in position 20
to compute the improvement metric. From these 6 cases of improvement, we
formulate a new metric we call “total improvement count”, which is the total
count of the 6 cases above. We present our results using this total improve-
ment count. For a detailed breakdown of improvements based on the 6 cases,
please refer to the Appendix. All metrics we use in RQ-2 are measured in the
same three debugging scenarios we use in RQ-1, i.e., best-case, worst-case, and
average-case.

Following previous work by Le et al. (2015a), we use Wilcoxon rank-sum
test (Wilcoxon, 1992) to identify statistically significant differences between
each pair of SBFL techniques. We apply this test to both the EXAM score
and FLT ranking. This test is chosen as the data is not normally distributed,
with d’Agostino-Pearson normality test (D’Agostino, 1971; D’Agostino and
Pearson, 1973) rejecting the hypothesis of normality with a p-value less than
0.05. As the Wilcoxon rank-sum test is also able to handle the ranking data,
which is ordinal (i.e. categorical data with set order), we also use it for the
top-k and improvement metrics.

RQ-3. There have been many studies that evaluated and compared SBFL
techniques. Summary of the previous studies on SBFL techniques is shown in
Table 2. We choose the same set of previous studies whose claims were ex-
amined by Pearson et al. (2017). These claims that were examined are claims
regarding the effectiveness of five different SBFL techniques. We summarize
claims regarding the effectiveness between the pair of SBFL techniques that
were evaluated by the set of studies. As an example, from the studies of arti-
ficial and real faults by Naish et al. (2011b), artificial and real faults by Moon
et al. (2014), and artificial faults by Pearson et al. (2017), we retrieve the evalu-
ations between OP and Ochiai technique pair, where all three studies highlight
that OP performs better than Ochiai. Using real Python faults from BugsInPy,
we subsequently examine the relative performance of each pair of SBFL tech-
niques in best-case, worst-case, and average-case debugging scenarios. In other
words, we compare the performance of 1) Ochiai versus Tarantula, 2) Barinel
versus Ochiai, 3) Barinel versus Tarantula, 4) OP versus Ochiai, 5) OP versus
Tarantula, 6) DStar versus Ochiai, and 7) DStar versus Tarantula. Then, we
determine whether the distribution of EXAM scores between the two tech-
niques is statistically significant. We use Wilcoxon rank-sum test (Wilcoxon,
1992) with a significance threshold of 0.05 for statistical comparison and Cliff’s
d to compute effect size (Cliff, 1993) following Le et al.’s study (2015a) since
the results of normal distribution test show that the data comes from a non-
normal distribution. Afterward, we compare the results on the real Python
faults against claims made by the previous studies.

14 Ratnadira Widyasari et al.

Table 2 Summary of the previous studies on SBFL techniques

Reference Lang. SBFL Rank
(from best to worst)

Projects Artif.
Faults

Real
Faults

Jones (2005) C Tarantula Siemens 122 -
Abreu et al. (2007) C Ochiai, Tarantula Siemens 120 -
Abreu et al. (2009a) C Ochiai, Tarantula Siemens, space 128 34
Abreu et al. (2009b) C Barinel, Ochiai, Taran-

tula
Siemens, space, gzip, sed 141 38

Ali et al. (2009) C Tarantula Concordance 200 13
Naish et al. (2011b) C OP, Ochiai, Tarantula Siemens, space 132 32
Le et al. (2013) C Ochiai, Tarantula Siemens, space,

NanoXML, XML-Security
164 35

Wong et al. (2013) C DStar, Ochiai, Taran-
tula

Siemens, space, ant, flex,
grep, gzip, make, sed, Unix

436 34

Moon et al. (2014) C OP, Ochiai space, flex, grep, gzip, sed 11 3
Xuan (2014b) Java Ochiai, Tarantula JExel, JParsec, Jaxen,

Commons Codec, Com-
mons Lang, Joda-Time

1800 -

Ju et al. (2014) C, Java DStar, Tarantula printtokens, printto-
kens2, schedule, schedule2,
totinfo, Jtcas, Sorting,
NanoXML, XML-Security

104 -

Le et al. (2015b) C DStar, Ochiai, Taran-
tula

Siemens, space,
NanoXML, XML-Security

165 35

Pearson et al. (2017) Java OP, DStar, Ochiai,
Barinel, Tarantula

JFreeChart, Closure, Com-
mons Lang, Commons
Math, Joda-Time

3242

{DStar≈Ochiai≈
Barinel≈Tarantula},
OP

323

4 Results

4.1 RQ-1

Top-k: To answer RQ-1, we compare the performance of the SBFL techniques
on Defects4J (Just et al., 2014a) with their performance on BugsInPy (Widyasari
et al., 2020). The top-k results for all the scenarios (i.e., best-case, average-case,
worst-case scenarios) are shown in Table 3. For all the debugging scenarios,
results on BugsInPy are lower for the same SBFL techniques (i.e., there is
a smaller percentage of faults included in top-k). The percentage difference
in top-k metric between BugsInPy and Defects4J results ranges from 11% to
44%, with all SBFL techniques localizing more faults in Defects4J within best-
case, average-case, worst-case scenarios. Even though BugsInPy has a higher
number of faults (493) than Defects4J (395), the absolute number of BugsInPy
faults in Top-k is lower than Defects4J. We subsequently investigate whether
this difference is statistically significant using the Wilcoxon rank-sum test. To
use the Wilcoxon rank-sum in this setting, we compare the distribution of ab-
solute ranks from faults in BugsInPy and Defects4J. The null hypothesis that
we use for the statistical test is H0 :the results come from the same distribu-
tion. We use a 5% significance level which means if the p-value is lower than
0.05, we can reject the null hypothesis and conclude that there is a statisti-

Evaluating SBFL Techniques on Python Projects 15

cally significant difference. We find that the result is statistically significant as
shown in Table 3, indicating that the faults in BugsInPy are harder to localize
using SBFL techniques than those in Defects4J.

Table 3 Top-k of BugsInPy and Defects4J, where higher percentage of fault that include
in top-k indicate better performance. Result in bold indicates dataset that has higher per-
centage of faults that are localized in top-k using the particular SBFL technique.

Best-case Debugging Scenario

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 12.98% 31.14% 19.87% 42.03% 55.78% 80.51% 6.1E−21* 0.36 (M)
Barinel 12.57% 31.14% 19.87% 42.03% 55.78% 80.51% 3.4E−21* 0.37 (M)
Ochiai 14.19% 32.41% 19.87% 42.53% 50.30% 81.77% 8.6E−26* 0.41 (M)
DStar 9.53% 32.15% 14.19% 42.03% 38.74% 82.53% 1.4E−43* 0.54 (L)
OP 6.89% 30.13% 11.96% 39.75% 38.94% 80.51% 2.6E−42* 0.53 (L)

Average-case Debugging Scenario

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 5.68% 16.96% 9.74% 25.32% 33.27% 67.34% 1.5E−30* 0.44 (M)
Barinel 5.27% 16.96% 9.74% 25.32% 33.27% 67.09% 8.8E−31* 0.45 (M)
Ochiai 6.29% 18.23% 9.33% 25.82% 30.02% 69.11% 4.1E−35* 0.48 (L)
DStar 4.46% 18.23% 7.51% 26.08% 23.94% 69.37% 1.5E−46* 0.56 (L)
OP 3.45% 17.97% 5.88% 26.08% 24.14% 66.33% 2.5E−43* 0.53 (L)

Worst-case Debugging Scenario

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 4.87% 15.70% 7.51% 23.04% 24.75% 54.94% 2.2E−27* 0.42 (M)
Barinel 4.46% 15.70% 7.51% 23.04% 24.75% 54.94% 1.6E−27* 0.42 (M)
Ochiai 5.27% 16.71% 7.10% 23.04% 22.72% 56.20% 7.0E−30* 0.44 (M)
DStar 3.85% 16.71% 5.68% 23.29% 17.85% 56.71% 6.8E−37* 0.49 (L)
OP 3.04% 16.20% 4.87% 22.53% 18.05% 54.18% 3.3E−34* 0.48 (L)
“*” indicates the different between the absolute rank is statistically significant at 5% level
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

Wasted effort: The wasted effort results from BugsInPy and Defects4J are
shown in Table 4. The results show that for all the debugging scenarios (i.e.,
best-case, average-case, and worst-case), Defects4J has a lower value of wasted
effort compared to BugsInPy. This indicates that the efforts that are wasted
when localizing the fault using the recommendation from SBFL techniques
are higher in BugsInPy. The differences between the BugsInPy and Defects4J
results are statistically significant with medium to large effect size. These
results indicate that the faults in BugsInPy are harder to localize using SBFL
techniques compared to Defects4J, which is inline with the Top-k results.

EXAM: Table 5 shows the comparison of EXAM scores between Pearson
et al.’s result that used Defects4J real faults and our results from BugsInPy
for different types of scenarios. Our EXAM scores result shows an improve-
ment compared to several previous studies (Le et al., 2013; Le et al., 2015a)
that use artificial faults. However, compared to Pearson et al.’s result on De-

16 Ratnadira Widyasari et al.

Table 4 Wasted effort of BugsInPy and Defects4J, where the smaller wasted effort indicate
better performance.

Best-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 2158.47 429.03 1.77E − 20* 0.36 (M)
Barinel 2158.47 429.05 9.75E − 21* 0.36 (M)
Ochiai 2274.7 418.9 2.64E − 25* 0.40 (M)
Dstar 2503.51 417.31 5.03E − 43* 0.53 (L)
OP 2445.99 481.02 9.14E − 42* 0.53 (L)

Average-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 5123.17 1038.62 7.47E − 29* 0.44 (M)
Barinel 5122.98 1037.62 4.49E − 29* 0.44 (M)
Ochiai 5184.69 1023.32 2.35E − 33* 0.47 (M)
Dstar 5303.46 1023.79 1.12E − 44* 0.55 (L)
OP 5247.37 1156.53 1.10E − 41* 0.52 (L)

Worst-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 7321.33 2386.64 7.15E − 26* 0.41 (M)
Barinel 7321.17 2386.64 1.57E − 27* 0.42 (M)
Ochiai 7355.53 2377.35 3.47E − 28* 0.43 (M)
Dstar 7433.58 2376.85 4.09E − 35* 0.48 (L)
OP 7454.21 2538.31 2.78E − 32* 0.46 (M)
“*” indicates the different between the wasted effort is statistically significant
(at significance level of 5%).
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N).

fects4J, the EXAM scores of the BugsInPy dataset on the best-case scenario
are higher, By using Wilcoxon rank-sum statistical test, the result of the best-
case scenario shows that the difference between EXAM scores of the evalu-
ated techniques (Tarantula, Barinel, Ochiai, DStar, and OP) are statistically
significantly different compared to the results in the previous study. More-
over, the effect sizes are small for all the techniques, except for Tarantula
and Barinel which have negligible effect sizes. For the average-case, the differ-
ence between the performance results of Tarantula, Barinel, and Ochiai is not
statistically significant with negligible effect size. Meanwhile, for the OP and
DStar, both techniques have statistically significantly better performance in
BugsInPy, compared to the Defects4J where the effect sizes are negligible and
small, respectively. For the worst-case debugging scenario, all the techniques
performance on BugsInPy are statistically significantly higher than Defects4J
with negligible effect size except for DStar which has a small effect size. This
shows that the scenarios affect the performance of the techniques with respect
to the percentage of statements that need to be checked (i.e., the number of
checked statements divided by the total number of statements).

The worst-case EXAM score in BugsInPy shows higher performance com-
pared to Defects4J, which suggests that BugsInPy has a lower percentage of
statements that need to be checked. However, we note that the average of the
total statements in the Defects4J is 14,322, while the average in BugsInPy
is 34,098. As BugsInPy has a much higher number of statements, the overall

Evaluating SBFL Techniques on Python Projects 17

Table 5 EXAM scores of BugsInPy and Defects4J, where the smaller EXAM score indicate
better performance.

Best-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 0.064112 0.042541 0.04* 0.08 (N)
Barinel 0.064123 0.041179 0.03* 0.08 (N)
Ochiai 0.069589 0.040171 9.3E − 5* 0.15 (S)
OP 0.077843 0.047095 5.5E − 14* 0.29 (S)
DStar 0.080444 0.040031 3.9E − 16* 0.32 (S)

Average-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 0.083056 0.089446 0.80 -0.01 (N)
Barinel 0.083065 0.088084 0.84 -0.01 (N)
Ochiai 0.089152 0.087853 0.22 0.05 (N)
OP 0.096655 0.100237 4.2E − 4* 0.14 (N)
DStar 0.099188 0.128669 1.9E − 5* 0.17 (S)

Worst-case Debugging Scenario
Technique BugsInPy Defects4J p-value d
Tarantula 0.143346 0.192170 0.02* 0.08 (N)
Barinel 0.143353 0.190808 0.02* 0.09 (N)
Ochiai 0.148211 0.191270 4.7E − 3* 0.11 (N)
OP 0.153765 0.205877 3.7E − 4* 0.14 (N)
DStar 0.156084 0.196445 2.4E − 5* 0.16 (S)
“*” indicates the different between the EXAM scores is statistically significant
(at significance level of 5%).
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N).

number of statements that need to be checked in BugsInPy is higher com-
pared to Defects4J, which indicates that the SBFL techniques perform worse
on BugsInPy. We also compare the number of failed statements and failed
test cases between BugsInPy and Defects4J. The number of statements that
need to be fixed in BugsInPy averages 13.96 statements with a median of 2.
Meanwhile, the number of fault statements in Defects4J has an average value
of 3.56 with a median of 2. The average number of failed test cases that exist
in Defects4J is 2.21 test cases with a median of 1. Comparatively, the number
of failed statements of failed test cases in BugsInPy is much higher, with an
average of 39 and a median of 4.

The lower result in BugsInPy may be affected by the trait of SBFL which
oversimplifies the coverage information into the number of covering tests for
each of the statements (Xie et al., 2016). As mentioned previously, the num-
ber of failed statements, total statements, and failed test cases are higher in
BugsInPy compared to Defects4J. The oversimplification of coverage infor-
mation may have bigger effects on more complex faults. In addition, SBFL
techniques only consider coverage as the sole input, which means it cannot
distinguish between program spectra with similar coverage (Xie et al., 2016).
We observe that this situation where multiple program spectra have similar
coverage (i.e., same number of fail and pass) comes up frequently in BugsInPy.
This shows that BugsInPy has a different trait than Defects4J, making it an

18 Ratnadira Widyasari et al.

interesting aspect to analyze further. In RQ-2 and RQ-3 we analyze deeper
the results of SBFL techniques in BugsInPy.

Finding 1: The faults in BugsInPy are harder to identify using
SBFL techniques compared to the faults in Defects4J. This
is indicated by the lower performance results of SBFL techniques in
BugsInPy compared to Defects4J in terms of several metrics (Top-
k, wasted effort, and EXAM score). The results of top-k and wasted
effort metrics in BugsInPy are significantly lower with medium and
large effect sizes. The percentage of faults that are included in the top-
k for Defects4J is twice the percentage of BugsInPy faults included in
the top-k.

4.2 RQ-2

Top-k in best-case scenario: First, we discuss the results for the best-case
scenario as introduced in Section 3.2.3. We use top-k metrics to measure the
performance of each SBFL technique, i.e. we measure how frequent each SBFL
technique is able to rank the fault statement within top-5, top-10, and top-
200. The result, shown in Table 7, is in line with the other metrics, except for
Ochiai’s performance. Ochiai performs better than Tarantula and Barinel on
top-5, even though it has a lower percentage than both on top-200. Apply-
ing statistical tests on the set of output fault statement ranks for every pair
of techniques being compared (e.g., Tarantula versus Barinel, Barinel versus
Ochiai), we find that Tarantula, Barinel, and Ochiai perform better (with
p<0.05) than DStar and OP for all Top-5, Top-10, and Top-200. The detailed
comparison of Top-k metrics is shown in Table 20 of the Appendix.

EXAM scores, tournament ranking, and FLT ranking in best-case
scenario: The effectiveness of the SBFL techniques on the Python faults in
terms of EXAM scores, tournament ranking, and FLT ranking is shown in
Table 6. The lower EXAM score and the FLT rank, the better the technique
performance. Based on the EXAM score and FLT ranking, we found that
Tarantula performs best with an EXAM score of 0.06411 and an FLT ranking
of 1.88. However, the differences between Tarantula and Barinel, as well as
the differences between Tarantula and Ochiai, are not statistically significant.
The three techniques are shown to perform better compared to DStar and OP

(p < 0.05). This result is in line with the previous finding where we use other
metrics (i.e., EXAM score, FLT ranking, and tournament ranking) in which
Tarantula, Barinel, and Ochiai are superior to DStar and OP.

The result of the SBFL technique ranking in terms of the mean EXAM
score shows consistency with the FLT ranking, except for OP, which has a lower
EXAM score compared to DStar. However, we note that the difference between
OP and DStar’s EXAM scores is not statistically significant (p = 0.76477) and

Evaluating SBFL Techniques on Python Projects 19

both techniques have the same ranking on the tournament ranking for EXAM
score. Moreover, for FLT ranking, DStar is significantly better than OP (p =
1.06E − 5).

Table 6 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking, tour-
nament ranking for EXAM score, and tournament ranking for FLT ranking respectively) in
best-case debugging scenario. A smaller value in EXAM score and FLT ranking indicates
a better performance. While higher value on tournament ranking (i.e., # Better) indicates
better performance or how many the technique perform statistically significantly better than
other techniques.

Technique EXAM Score FLT Ranking #Better
(EXAM Score)

#Better
(FLT Ranking)

Tarantula 0.06411 1.8874 2 3
Barinel 0.06412 1.9006 2 3
Ochiai 0.06958 2.5993 2 2
DStar 0.08044 3.1622 0 1
OP 0.07784 3.4391 0 0

Table 7 Percentage of fault statements that appear within Top-5, Top-10, and Top-200 in
best-case debugging scenario. Result in bold is the best for the category.

Technique Top-5 Top-10 Top-200
Tarantula 12.98% 19.87% 55.78%
Barinel 12.57% 19.87% 55.78%
Ochiai 14.19% 19.87% 50.30%
DStar 9.53% 14.19% 38.74%
OP 6.89% 11.96% 38.94%

Table 8 Improvement of SBFL techniques A over B, where A are the techniques in the
top row and B are the techniques in the most left row. The number in each cell presents
the number of faults in which a technique performs better than another technique. For
example, Tarantula improves the ranking result of two faults against Barinel. “*” indicates
the difference between the improvement is statistically significant

B
A

Tarantula Barinel Ochiai DStar OP

Tarantula 0 0 19* 17* 20*
Barinel 2* 0 21* 19* 22*
Ochiai 44* 44* 0 7* 10*
DStar 123* 123* 92* 0 3

OP 142* 142* 111* 19* 0

Improvement in best-case scenario: In addition to previous evaluations,
we also investigate the improvement for each pair of SBFL techniques. The
total improvement count is shown in Table 8, while the detailed improvements
(i.e., 6 cases improvement) are reported in Table 21 in the Appendix. The

20 Ratnadira Widyasari et al.

number of improvement from Table 8 presents the number of faults in which
technique A perform better than another technique B. For example, Tarantula
improves a total of 123 faults over DStar. To examine the statistical signifi-
cance of each reported improvement, we apply the Wilcoxon rank-sum test.
The Wilcoxon rank-sum test produces a statistically significant difference for
all comparisons except for improvements of Barinel against Tarantula and OP

against DStar. The total improvement count of Barinel against Tarantula is
zero while the total improvement count of OP against DStar is 3. Even though
the total improvement count of Tarantula against Barinel is also small, the
improvement is statistically significant, with the faults ranked lower than 5 in
Barinel being improved to top-5 in Tarantula. Based on Table 8, we can see
that Tarantula provides the best result, with a slight improvement compared
to Barinel and Ochiai. Tarantula and Barinel produce the biggest improve-
ments over DStar and OP, with both techniques improve 142 faults compared
to OP and 123 faults compared to DStar. While Ochiai outperforms DStar
and OP, there is a smaller improvement than Tarantula and Barinel. An inter-
esting point is that there are a few faults on which DStar and OP outperform
Tarantula, Barinel, and Ochiai. In summary, each technique outperforms other
techniques with respect to some bugs, with the exception of Tarantula that
does not outperform Barinel on any fault. This suggests the value of combining
SBFL techniques to improve fault localization performance on the BugsInPy
dataset.

Finding 2: Tarantula performs the best on real Python faults
in terms of EXAM score, FLT ranking, tournament ranking, top-k,
and improvement in the best-case scenario. However, the differences
compared to Barinel and Ochiai are not statistically significant. While
DStar and OP generally perform worse than the other three techniques
in terms of all metrics, they still boost some faults in improvement
metrics, indicating that there are certain cases in which they are more
effective.

Top-k in average-case and worst-case scenario: In addition to the best-
case debugging scenario, we also conduct an analysis for average-case and
worst-case debugging scenarios. The result for top-k in the different debugging
scenarios is shown in Table 10. All three scenarios produce the same SBFL
technique ranking. In line with results from the best-case scenario, Tarantula,
Barinel, and Ochiai significantly outperform DStar and OP in both average-
case and worst-case. Ochiai outperforms DStar and OP in all Top-k evaluations
(i.e., k=5, k=10, and k=200). Table 20 of the Appendix shows the detailed
results of the comparison of the techniques using the top-k metric. The rank
performance of SBFL techniques using top-k metrics is consistent in different
debugging scenarios.

EXAM scores, tournament ranking, and FLT ranking in average-
case and worst-case scenario: We report the resulting EXAM scores for

Evaluating SBFL Techniques on Python Projects 21

the average-case and worst-case scenarios in Table 9. For the average-case
scenario, Tarantula ranks first, but without significant differences to Barinel
and Ochiai. Meanwhile, for the worst-case debugging scenario, there are no
significant differences between all techniques, although here Tarantula also
ranks first. The value of the EXAM score on the average-case and worst-case
scenario are higher than the best-case scenario showing lower performance.
This indicates that for the EXAM score, the different debugging scenarios
have a significant effect on the EXAM score result. For FLT ranking, the
result is also shown in Table 9. The results on all debugging scenarios for FLT
ranking produce a consistent ranking. The tournament ranking also shows the
same ranking as the best-case debugging scenario. This indicates that different
debugging scenarios do not affect results for the FLT ranking.

Table 9 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking, tour-
nament ranking for EXAM score, and tournament ranking for FLT ranking respectively)
on average-case and worst-case debugging scenario.

Average-case Debugging Scenario
Technique EXAM Score FLT Ranking #Better

(EXAM Score)
#Better

(FLT Ranking)
Tarantula 0.083056 2.00347 2 3
Barinel 0.083065 2.01018 2 3
Ochiai 0.089152 2.61555 2 2
DStar 0.099188 3.03839 0 1
OP 0.096655 3.27146 0 0

Worst-case Debugging Scenario
Technique EXAM Score FLT Ranking #Better

(EXAM Score)
#Better

(FLT Ranking)
Tarantula 0.143346 2.07988 0 3
Barinel 0.143353 2.08806 0 3
Ochiai 0.148211 2.60322 0 2
DStar 0.156084 2.95583 0 1
OP 0.153765 3.16553 0 0

Improvement in average-case and worst-case scenario: The total im-
provement count metric in average-case and worst-case debugging scenarios
are shown in Table 11, while the detailed improvement figures are reported in
Tables 22 and 23 in the Appendix. In the best-case scenario, Tarantula and
Barinel give the biggest improvement over DStar and OP. Improvements from
Ochiai over DStar and OP are bigger than the improvements from Tarantula
and Barinel over Ochiai. In the average-case and worst-case debugging sce-
nario, Ochiai, DStar, and OP also produce an improvement over Tarantula
and Barinel. This suggests the possibility of combining these techniques to
achieve a better overall result. From this result we can also infer that if a fault
localization tool user already uses Tarantula, they will not benefit from also
running Barinel, however, some benefits may be obtained by running Ochiai,
DStar, or OP. For this part of the analysis, the improvement results for almost

22 Ratnadira Widyasari et al.

Table 10 Top-k on average-case and worst-case debugging scenario. Result in bold is the
best for the category.

Average-case Debugging Scenario
Techniques Top-5 Top-10 Top-200
Tarantula 5.68% 9.74% 33.27%
Barinel 5.27% 9.74% 33.27%
Ochiai 6.29% 9.33% 30.02%
DStar 4.46% 7.51% 23.94%
OP 3.45% 5.88% 24.14%

Worst-case Debugging Scenario
Techniques Top-5 Top-10 Top-200
Tarantula 4.87% 7.51% 24.75%
Barinel 4.46% 7.51% 24.75%
Ochiai 5.27% 7.10% 22.72%
DStar 3.85% 5.68% 17.85%
OP 3.04% 4.87% 18.05%

Table 11 Improvement on Average-case and Worst-case Debugging Scenario where the top
row is the improvement against the column (e.g., in average-case scenario Tarantula improve
63 faults against DStar, in worst-case scenario Ochiai improve 6 faults against Tarantula).

Average-case Debugging Scenario

B
A

Tarantula Barinel Ochiai DStar OP

Tarantula 0 0 8* 9* 9*
Barinel 2* 0 10* 11* 11*
Ochiai 26* 26* 0 4* 6*
DStar 63* 63* 44* 0 2

OP 71* 71* 54* 10* 0

Worst-case Debugging Scenario

B
A

Tarantula Barinel Ochiai DStar OP

Tarantula 0 0 6* 7* 9*
Barinel 2* 0 8* 9* 11*
Ochiai 18* 18* 0 4* 6*
DStar 47* 47* 35* 0 2*

OP 53* 53* 41* 6* 0

all technique pairs in both average-case and worst-case are statistically signif-
icant. The exceptions are the improvement of Barinel over Tarantula in both
scenarios and the improvement of OP over DStar in the average-case scenario.

Finding 3: Performance rankings of SBFL techniques on different de-
bugging case scenarios are consistent, i.e. Finding 2 (Tarantula per-
forms the best on real Python faults) holds for all 3 debugging scenarios
– best-case, average-case, and worst-case.

Top-k in different types of faults: There are several types of faults in
BugsInPy, such as single-line faults, multi-line faults, and faults of omission.

Evaluating SBFL Techniques on Python Projects 23

1 if (x.isExist()):

2 return true

3 if (x.isNew()):

4 return true

5 + if (x.isRemove()):

6 + return true

1 + if (x.isRemove()):

2 + return true

3 if (x.isExist()):

4 return true

5 if (x.isNew()):

6 return true

1 if (x.isExist()):

2 return true

3 + if (x.isRemove()):

4 + return true

5 if (x.isNew()):

6 return true

1 if (x.isExist()):

2 return true

3 if (x.isNew()):

4 return true

5 + if (x.isRemove()):

6 + return true

Fig. 2 Example of fault omission (top) with the valid placement of the fixing statements
(bottom).

Multi-line faults are faults where the changes to fix the fault span over
more than one line. Meanwhile, single-line faults are faults that can be fixed by
modifying one line. Changes to fix faults in real faults may consist of only code
addition rather than the modification of existing code. In BugsInPy, there are
approximately 13% of faults that have a missing statement(s) without faulty
statements. We refer to these cases as the fault of omission. The location of
the changes will be complicated in the fault of omission when the developer
inserts the new code at some lines while there may be other locations that are
also valid choices to fix the fault. Consider the fault of omission in Figure 2, we
can insert the conditional that is missing (if statement) before line 1, between
line 2 and line 3, or after line 4. The bottom part of Figure 2 shows the valid
placement of the conditional statement.

The fault localization technique’s output which includes any of the above
possible statements in Figure 2 is just as useful as showing the line the devel-
oper has chosen. Thus, we conducted manual analysis for the fault of omission
and provided an alternative location where the faults can be fixed. Figure 3
shows the distribution of the type of faults based on the three categories on
BugsInPy.

We wanted to further analyze whether the results of the SBFL technique
would be different on these different types of faults. We find that the perfor-
mance ranking of SBFL techniques is consistent for all debugging scenarios.
We also consider the finding of Pearson et al. (2017) which states that “the
best-case debugging scenario is the best approximation of user real cases”.
For the experiments involving the different types of faults (e.g., single-line
fault, multi-line faults, and faults of omission), we only calculate the metrics
in the best-case debugging scenario. We subsequently measure the top-k met-
rics for each SBFL technique using different types of faults. The result of these
measurements are shown at Table 13. We find that the ranking of techniques
on top-k measurement is consistent for each type of fault. Moreover, we also

24 Ratnadira Widyasari et al.

Fig. 3 Distribution of faults following Pearson et al. (2017) in BugsInPy.

find that the ranking of techniques is in line with our findings using previous
metrics. As with the previous statistical test result on all faults, the test re-
sult on different types of faults shows the statistically significant difference on
Tarantula, Barinel, and Ochiai compared to DStar and OP, where the three
techniques are outperforming DStar and OP.

EXAM scores, tournament ranking, and FLT ranking in different
types of faults: Table 12 show the experiment results on different types of
faults using EXAM scores, FLT ranking, and tournament ranking. We note
that the ranking of SBFL techniques on all metrics is consistent among differ-
ent types of faults, with the best scores achieved on a multi-line fault without
fault of omission. This finding is expected as it is easier to determine the lo-
cation of any of the multiple buggy lines (i.e., multi-line fault) compared to
finding the exact location of a single buggy line (i.e., single-line fault). In case
of fault of omission, SBFL may produce worse results as the buggy program it-
self do not actually contain faulty statements and good candidate locations for
insertion of needed statement may not be considered by the SBFL technique.
Overall, these results are in line with results reported by Pearson et al. (2017),
where they found that the best EXAM score is achieved for the multi-line
faults (excluding faults of omission), followed by all multi-line faults (includ-
ing faults of omission), and single-line faults.

Finding 4: The performance ranking of SBFL techniques on all metrics
is consistent among the different types of faults, with the best scores
achieved on multi-line faults (excluding faults of omission), followed by
all multi-line faults, and single-line faults.

4.3 RQ-3

Check the claim of SBFL effectiveness from 7 prior studies in Python
real faults: For RQ-3, we investigate the 7 finding statements from prior stud-

Evaluating SBFL Techniques on Python Projects 25

Table 12 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking,
tournament ranking for EXAM score, and tournament ranking for FLT ranking respectively)
on different type of faults

Single-line fault that were not fault of omission
Technique EXAM Score FLT Ranking #Better

(EXAM Score)
#Better

(FLT Ranking)
Tarantula 0.0732 1.9508 2 3
Barinel 0.0733 1.9877 2 3
Ochiai 0.0764 2.6352 2 2
DStar 0.0915 3.0861 0 1
OP 0.0882 3.3361 0 0

Multi-line faults that were not fault of omission
Technique EXAM Score FLT Ranking #Better

(EXAM Score)
#Better

(FLT Ranking)
Tarantula 0.030513 1.7312 2 3
Barinel 0.030516 1.7448 2 3
Ochiai 0.035092 2.5782 2 2
DStar 0.046242 3.3299 0 1
OP 0.045512 3.6292 0 0

Multi-line faults that included fault of omission
Technique EXAM Score FLT Ranking #Better

(EXAM Score)
#Better

(FLT Ranking)
Tarantula 0.061101 1.8665 2 3
Barinel 0.061102 1.8719 2 3
Ochiai 0.067339 2.5876 2 2
DStar 0.076799 3.1873 0 1
OP 0.074429 3.4730 0 0

Table 13 Percentage of fault statements that appear within Top-5, Top-10, and Top-200
on different type of faults

Single-line without omission
Technique Top-5 Top-10 Top-200
Tarantula 12% 18% 52%
Barinel 11% 18% 52%
Ochiai 14% 18% 49%
DStar 9% 12% 39%
OP 8% 11% 40%

Multi-line without omission
Technique Top-5 Top-10 Top-200
Tarantula 18% 24% 66%
Barinel 18% 24% 66%
Ochiai 20% 24% 58%
DStar 14% 18% 42%
OP 11% 16% 42%

Multi-line with omission
Technique Top-5 Top-10 Top-200
Tarantula 13% 20% 57%
Barinel 13% 20% 57%
Ochiai 14% 20% 51%
DStar 10% 15% 39%
OP 6% 12% 39%

26 Ratnadira Widyasari et al.

ies that have also been checked by Pearson et al. (2017). The comparison of
SBFL techniques obtained from our experiments on Python faults, as well
as the results reported by Pearson et al. on Java faults and other preceding
studies, are shown in Table 14. The second columns of Table 14 show prior
comparison results using Java and C artificial faults, while the third and fourth
columns show the prior comparison result from Pearson et al. (2017) using real
faults. The rightmost two columns of Table 14 show the result of our study.
The BugsInPy result shows disagreements with results of previous comparisons
on Java and C artificial faults. The differences are found in the relative perfor-
mances between OP and DStar compared with Ochiai and Tarantula (rows 4,
5, 6, and 7 in Table 14). Based on BugsInPy results, OP and DStar have worse
performance (differences which are also statistically significant) compared to
Ochiai and Tarantula respectively. However, the effect sizes of the differences
are small, except for the comparison between DStar and Ochiai which has a
negligible effect size. This finding refutes the previous finding on Java and C
artificial faults where OP and DStar perform better compared to Ochiai and
Tarantula. Comparisons between Ochiai, Tarantula, and Barinel in rows 1,
2, and 3 Table 14 show that the Wilcoxon test results are not statistically
significant. We also found the effect sizes to be negligible.

Table 14 Comparison results of preceding studies using Java/C artificial faults (second
column), Defects4J Java real faults (third and fourth columns), and BugsInPy Python real
faults (fifth and sixth columns) in best-case debugging scenario.

No.

Previous comparisons
on Java or C

artificial faults
Defects4J Results (2017) BugsInPy Results

Winner>Loser Agree? Effect size Agree? Effect size

1. Ochiai >Tarantula ∗ (insig.) -0.02 (N) (insig.) 0.04 (N)

2.
Barinel >Ochiai
(Abreu et al., 2009b)

(insig.) 0.02 (N) (insig.) -0.04 (N)

3.
Barinel >Tarantula
(Abreu et al., 2009b)

(insig.) 1.9E−5 (N) (insig.) 0.002 (N)

4.
OP >Ochiai
(Naish et al., 2011a)

(insig.) 0.04 (N) no 0.15 (S)

5. OP >Tarantula † (insig.) 0.02 (N) no 0.21 (S)

6. DStar >Ochiai ‡ (insig.) -0.03 (N) no 0.14 (N)
7. DStar >Tarantula ∗∗ (insig.) -0.02 (N) no 0.19 (S)

∗(Le et al., 2013, 2015b; Naish et al., 2011a; Wong et al., 2016; Xuan and Monperrus, 2014b)
†(Naish et al., 2011a; Moon et al., 2014) ‡(Le et al., 2015b; Wong et al., 2016)
∗∗(Le et al., 2015b; Wong et al., 2016; Ju et al., 2014)
Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

Check the claim of SBFL effectiveness from Pearson et al. (2016)
that used Java real faults (Defect4J): We further compare the agreement
of the 7 key statements between Python real faults (BugsInPy) and Java real
faults (Defects4J). In Java real faults all 7 key statements are refuted by
having insignificant differences for all comparisons of SBFL techniques in the

Evaluating SBFL Techniques on Python Projects 27

key statements. On the contrary, based on our result in Python’s real faults, we
find that there are key statements that are refuted with statistically significant
differences. These cases are found on the key statements which compare OP

and DStar with Ochiai and Tarantula. Results for the average-case and worst-
case scenarios, shown in Table 24 and 25 in the Appendix, also refuted the 7
key statements in prior works.

Finding 5: Similar to Pearson et al.’s 2017 study on Java bugs, our
study on Python programs does not show any support to the 7 key
finding statements reported in prior works. Our finding shows there
are statistically significant differences that refute the key statements
that compare OP and DStar with Ochiai and Tarantula. The results
are different from findings of Pearson et al. (2017) that do not uncover
statistically significant differences.

The average-case scenario results of BugsInPy also produce statistical dif-
ferences on key statements that compare OP and DStar with Ochiai and Taran-
tula with small and negligible effect sizes. Meanwhile, in the worst-case sce-
nario, the key statements are all refuted by having statistically insignificant
differences between key statements with a negligible effect size for all compar-
isons. Our results show a consistency of SBFL technique rank (i.e., the rank
of SBFL technique by mean EXAM score) for all the scenarios. Compared to
the Defects4J results, the SBFL techniques that perform better (i.e., having a
lower mean EXAM score) are different, and at the same time, the differences
are insignificant for all statements in different scenarios. For example, for the
best-case scenario, the mean EXAM score of DStar is lower than Ochiai while
for the average-case DStar has a higher mean EXAM score than Ochiai.

In our experiments, the relative performances of the different techniques on
real Python faults do not match with the results on artificial faults reported
by previous studies (Le et al., 2013; Abreu et al., 2009b; Le et al., 2015b; Naish
et al., 2011a; Wong et al., 2016; Xuan and Monperrus, 2014b; Moon et al., 2014;
Ju et al., 2014), except for Barinel having a lower EXAM score than Ochiai. On
the other hand, our results agree with Pearson et. al.’s observations on Java’s
real faults, namely, the performance of SBFL techniques on artificial faults is
different from the real faults. This further corroborates their observation that
the SBFL techniques’ performances on artificial faults are not useful predictors
for their performance on real faults.

Finding 6: Claim from the previous studies regarding the performance
of SBFL techniques does not hold on Python real faults (BugsInPy) on
all debugging scenarios (i.e., best-case, average-case, and worst-case).

28 Ratnadira Widyasari et al.

5 Discussion and Implications

5.1 On the fairness of comparison between BugsInPy and Defects4J

There are no significant differences between the distribution of faults
in BugsInPy and Defects4J (except for Type, Object Instantiation,
and Assignment categories). Following the categorization of faults that are
described in Section 5.2, we would like to investigate the fairness of comparison
between BugsInPy and Defects4J. For this purpose, we collect the distribution
of the fault categories from the labeled faults. The distribution of the category
of faults in Defects4J and BugsInPy can be found in Figure 4. Based on the
distribution, we observe that for both BugsInPy and Defects4J, the fault cate-
gory with the highest occurrences is the Method Call, occurring in 76.27% and
75.95% of the datasets, respectively. We also find that many of the fault cate-
gories in BugsInPy have similar distribution with those in Defects4J, such as
the Variable category (40.51% in Defects4J and 38.34% in BugsInPy) and Re-
turn category (37.47% in Defects4J and 33.67% in BugsInPy). The differences
in the distribution of faults category are found in the Type and Assignment
category, which is more prevalent in BugsInPy which has 64 faults (16.20%)
and 306 faults (62.07%) respectively, compared to the Defects4J which only
has 3 faults (0.61%) and 184 faults (46.58%) respectively. Another difference
is from the Object Instantiation category where Defects4J has a higher num-
ber of faults which is 85 (21.52%), compared to BugsInPy which has 48 faults
(9.74%). Nevertheless, the difference between the number of faults in Defect4J
and BugsInPy for each category is small, ranging from 0.3 to 15%.

We also run a Chi-Square test (Tallarida and Murray, 1987) with a 1% sig-
nificance level (Rayson et al., 2004; Martinez and Monperrus, 2015; Ruthruff
et al., 2005) to determine whether the differences between the distribution
for every fault category are significant. The p-value results of the Chi-Square
test are higher than 0.01 for 7 fault categories, which are Loop (p-value =
0.036), Method Definition (p-value = 0.076), Exception (p-value = 0.138),
Return (p-value = 0.221), Variable (p-value = 0.431), Conditional (p-value =
0.019), and Method Call (p-value = 0.736). The p-value of more than 0.01 in-
dicates that there are no significant differences between the faults in BugsInPy
and Defects4J for the 7 fault categories. Meanwhile, for Object Instantiation,
Type, and Assignment fault categories, the p-value results from Chi-Square
test are smaller than 0.01. Specifically, the p-values are 2.43E−06, 1.25E−10,
and 0.003 respectively. Through these observations, we find that the faults in
BugsInPy and Defects4J have similar distributions except for the Object In-
stantiation, Type, and Assignment categories.

The SBFL performance on the subset of fault categories are in-
line with the whole dataset. Furthermore, we run additional experiments
using the subset of fault categories for a fair comparison. In these additional
experiments, we compare the performance of the SBFL techniques for each
subset of the dataset based on the category of faults (e.g., comparing evalua-
tion results from Defects4J Method Call faults against BugsInPy Method Call

Evaluating SBFL Techniques on Python Projects 29

(a)

(b)

Fig. 4 Distribution of fault category in (a) Defects4J and (b) BugsInPy.

faults, etc.). Table 15 shows the results in the Top-k metric for the three most
frequent fault categories in both datasets (i.e., Method call, Assignment, and
Conditional). From these additional experiments on the subset of the dataset,
we find that the results are inline with our previous results on the whole
dataset. Specifically, we find that the differences between the fault localization
evaluation results are statistically significantly higher in Defects4J (except for
the Type category where we found to have higher results in Top-5 and Top-10
in BugsInPy compared to Defects4J).

30 Ratnadira Widyasari et al.

Table 15 Top-k of BugsInPy and Defects4J for three highest faults type (i.e., Method Call,
Assignment, and Conditional) in best case debugging scenario, where higher percentage of
fault that include in top-k indicate better performance. Result in bold indicates dataset
that has higher percentage of faults that are localized in top-k using the particular SBFL
technique.

Method Call

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 15.16% 31.33% 22.07% 41.33% 56.12% 80.67% 1.39E-14* 0.34 (M)
Barinel 14.63% 31.33% 22.07% 41.33% 56.12% 80.67% 7.92E-15* 0.35 (M)
Ochiai 16.22% 32.33% 22.07% 41.67% 50.53% 81.67% 3.59E-18* 0.39 (M)
Dstar 10.37% 32.0% 15.43% 41.0% 39.63% 82.33% 1.96E-32* 0.53 (L)
OP 7.71% 31.0% 13.03% 39.67% 39.89% 80.33% 4.17E-32* 0.53 (L)

Assignment

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 12.75% 30.43% 20.59% 41.3% 55.88% 82.61% 1.72E-12* 0.38 (M)
Barinel 12.42% 30.43% 20.59% 41.3% 55.88% 82.61% 1.31E-12* 0.38 (M)
Ochiai 14.05% 32.07% 20.92% 41.85% 50.33% 83.7% 1.69E-15* 0.43 (M)
Dstar 9.15% 31.52% 14.71% 41.85% 39.22% 84.78% 2.52E-25* 0.56 (L)
OP 6.21% 29.35% 12.09% 39.13% 39.54% 83.7% 1.47E-25* 0.56 (L)

Conditional

Technique
Top-5 Top-10 Top-200

p-value d
BugsInPy Defects4J BugsInPy Defects4J BugsInPy Defects4J

Tarantula 11.5% 29.48% 18.12% 40.67% 54.7% 79.48% 3.25E-14* 0.37 (M)
Barinel 11.15% 29.48% 18.12% 40.67% 54.7% 79.48% 2.28E-14* 0.37 (M)
Ochiai 11.85% 30.97% 18.12% 41.04% 50.52% 80.6% 2.30E-17* 0.42 (M)
Dstar 7.67% 30.6% 12.54% 39.93% 37.28% 81.72% 4.35E-29* 0.55 (L)
OP 5.57% 29.1% 10.1% 38.06% 37.28% 80.22% 3.69E-28* 0.54 (L)
“*” indicates the different between the absolute rank is statistically significant at 5% level
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

5.2 On the potential factors that affect the SBFL results

We analyze the faults in BugsInPy to determine the factors that affect the
SBFL results. We find that there are several factors that may lead to changes
in the performance of SBFL techniques, including (1) the faults nature, (2)
the quality of the test cases, and (3) the programming language nature.

The fault’s nature in the dataset may affect the performance of
the SBFL technique. Based on the RQ-1 results, we found that the number
of failed test cases and the number of statements that need to be fixed are
higher on the BugsInPy compared to the Defects4J. These may indicate that
the faults in BugsInPy are more complicated than those in Defects4J, as the
effort required to fix the fault (i.e., in terms of the number of statements that
need to be changed) is higher. This may be one of the reasons that make the
SBFL techniques perform better in Defects4J compared to the BugsInPy.

High code coverage (i.e., the absolute ratio of covered code) does
not always correlate with good SBFL results. One of the ways to mea-
sure the quality of the test cases is by using code coverage. Code coverage
determines whether the test cases are covering the code and how much of the

Evaluating SBFL Techniques on Python Projects 31

code is covered by the test cases. For example, if we have 10 statements in file
A, with test case B executing/covering 7 statements from file A, then the state-
ment coverage is 70%. We calculate the statement coverage of both datasets
(i.e., BugsInPy and Defects4J). For projects in BugsInPy, we use coverage.py
to calculate the statement coverage. Meanwhile, we use GZoltar to calculate
the coverage of Java code in Defects4J. We measure statement coverage as we
evaluate the SBFL on the statement granularity.

Table 16 shows the statement coverage from projects in Defects4J, while
Table 17 shows the statement coverage from projects in BugsInPy. The average
value of statement coverages for Defects4J is 66% while BugsInPy has 71%
statement coverage. Both measurements show comparatively high statement
coverage. However, the SBFL performance metrics for BugsInPy are lower
compared to those in Defects4J. This indicates that good coverage calculated
by the absolute ratio of covered code does not always correlate with good
SBFL results. For example, we can see that the Math project from Defects4J
has the lowest statement coverage while having the highest percentage of faults
that are localized in the Top-200. Meanwhile, the Mockito project has the
highest statement coverage but has the highest EXAM score, which indicates
a lower performance of the SBFL technique. These occurrences are also found
in BugsInPy, where the black project has a high coverage but the EXAM score
is comparatively high compared to the other projects.

Table 16 Statement coverage of Defects4J with the Top-K and EXAM score for each
project using Tarantula.

Project Statement Coverage Top-5 Top-10 Top-200 EXAM
Chart 61.10% 26.92% 57.69% 88.46% 0.048
Closure 71.64% 15.79% 24.81% 67.67% 0.023
Lang 73.69% 46.15% 60% 90.77% 0.059
Math 48.99% 36.79% 46.23% 91.51% 0.036
Mockito 79.41% 34.21% 42.11% 76.32% 0.071
Time 77.83% 48.15% 51.85% 74.07% 0.01

Language nature has some impacts toward the SBFL perfor-
mance. We found that some characteristics of the programming language
affect the SBFL performance. For example, in Java, each variable is associ-
ated with a fixed data type (as Java employs static type checking). If the
variable is an integer type, then only the integer can be assigned to the vari-
able throughout the execution of the program. Each variable in Java also needs
to be declared before being used, which means that the variable is bound to
its data type. Meanwhile, in Python, it is not possible to declare a variable.
Rather, values are directly assigned to the variable through assignment, with-
out the need of indicating the variable’s type. The type of variables may also
change during the program execution in Python (as Python employs dynamic
type checking). For example, we can assign a string to the variable, use the
variable as a string, and then assign an integer to the same variable.

32 Ratnadira Widyasari et al.

Table 17 Statement coverage of BugsInPy with the Top-K and EXAM score for each
project using Tarantula.

Project Statement Coverage Top-5 Top-10 Top-200 EXAM
ansible 51% 0.00% 0.00% 11.11% 0.062
black 91% 13.33% 20.00% 53.33% 0.133
cookiecutter 79% 0.00% 0.00% 75.00% 0.107
fastapi 65% 18.75% 18.75% 43.75% 0.049
httpie 84% 0.00% 0.00% 60.00% 0.163
keras 69% 0.00% 0.00% 46.67% 0.055
luigi 64% 0.00% 0.00% 39.39% 0.035
matplotlib 71% 0.00% 0.00% 23.33% 0.106
pandas 69% 12.43% 18.93% 63.31% 0.048
PySnooper 43% 0.00% 0.00% 66.67% 0.23
sanic 90% 0.00% 0.00% 60.00% 0.077
scrapy 78% 45.00% 60.00% 92.50% 0.033
spacy 64% 10.00% 30.00% 60.00% 0.156
thefuck 81% 56.25% 87.50% 93.75% 0.011
tornado 82% 0.00% 0.00% 37.50% 0.112
tqdm 78% 11.11% 44.44% 88.89% 0.128
youtube-dl 51% 0.00% 2.33% 27.91% 0.099

During the analysis of the changes that fix the fault, we found that many
faults occurred because the type of variable is not the one expected in the
test case. To fix this type of fault, developers need to convert the type of the
variable to the expected type. The conversion of variable type when fixing the
fault is usually done using a method call that does explicit type conversion.
This can be done using the built-in functions of Python such as str(), int(),
float(), etc. For example, we can convert a string to an integer by calling the
function int(). This will also check whether the string that is being converted
to an integer only contains a numerical value. If it detects otherwise, it will
raise an error. We found that this type of change to fix the fault involving
explicit type conversion is unique in Python (BugsInPy) and is not found in
Defects4J.

To further determine the impact of this fault characteristic, we analyzed
the faults in BugsInPy and categorized them. Specifically, we followed the pre-
vious study (Sobreira et al., 2018; Vancsics et al., 2020; Pan et al., 2009) that
investigated how specific faults were fixed by the developers. In other words,
we categorized the faults based on the repair action of a developer. We used
a classification scheme from Sobreira et al. (2018) that was previously used
to categorize faults in Defects4J. Sobreira et al. (2018) proposed the following
categories: Assignment, Conditional, Loop, Method Call, Method Definition,
Object Instantiation, Exception, Return, Variable, and Type. Their definitions
adjusted for the context of Python programs are provided in Table 18. As an
example, considering the code changes shown in Figure 5, we find that the
changes to fix the fault are related to the following categories:

– Conditional: line 9, Conditional Branch Addition (addition of a simple if)
– Exception: line 10, Exception Addition (addition of raise statement)

Evaluating SBFL Techniques on Python Projects 33

– Method Call: line 9, Method Call Addition (addition of method call inside
if statement)

We analyze the changes that fix the fault to have a better understanding of
the changes that were done by the developer. For every changed file, the two
authors label the data independently to prevent bias in the labeling process. If
there are differences in the label, the authors conduct a discussion to resolve the
differences. The inter-rater agreement value calculated using Cohen’s kappa
(Cantor, 1996) is 0.76, which is interpreted as excellent agreement (DeVellis,
2005). Note that one fault can have multiple labels as it may need multiple
repair actions to fix it.

Then, following the categorization, we run SBFL techniques on the subset
of faults category for both BugsInPy and Defects4J. We counted faults that are
localized into non-overlapping intervals of [1; 5], (5; 10], (10; 200], or (200;. . .].
For example, [1;5] means that the fault is localized in between 1 to 5 position,
(5;10] mean that the fault is localized between 6 to 10 position, and so on.
This interval statistic is shown in Figure 6. The color of the bar in Figure 6
indicates the faults that are localized at a specific interval. For example, from
the figure we can observe that for BugsInPy, using Tarantula, there are 22%
of faults that are localized in the Top-5 for the Return category.

Based on the analysis of the subset of faults category, we find that some
differences are due to the language nature. Specifically, we find differences in
the Type and Object Instantiation categories. Our analysis found that the
three faults in the Type category from Defects4J are different from the one on
BugsInPy. Specifically, we found the following Type faults in Defects4J:

– Type addition: shown in Figure 7.
– Type implemented interface modification: shown in Figure 8 and Figure 9.

Meanwhile, in BugsInPy there are 64 faults out of 493 (13%) which are
fixed by explicitly changing the variable type into another type using the
built-in type conversion function in Python. We compare the evaluation re-
sults of SBFL techniques for faults of the Type category to those of the other
categories. We found that the Type category has the highest percentage of
faults that are localized in the Top-5 and Top-10 by SBFL techniques. Mean-
while, the performance of SBFL techniques for the Type category subset in
Defects4J does not localize any of the faults in Top-5 and Top-10. This high-
lights that Type category faults are localized better using the SBFL techniques
in BugsInPy (i.e., Top-5 and Top-10).

Another difference based on the language nature is found in the object in-
stantiation pattern. Object instantiation in Python does not utilize the ”new”
keyword. Rather, it is done similarly to a method call. Comparing the perfor-
mance of the Object Instantiation category between Defects4J and BugsInPy,
we find that BugsInPy has much worse performance. Specifically, Object In-
stantiation is the second-best performing category in terms of Top-5 and Top-
10 in Defects4J. Meanwhile, in BugsInPy, the Object Instantiation category
performs the worst, far different from the category’s performance in Defects4J.

34 Ratnadira Widyasari et al.

1 diff --git a/pandas/core/dtypes/cast.py
2 b/pandas/core/dtypes/cast.py
3 --- a/pandas/core/dtypes/cast.py
4 +++ b/pandas/core/dtypes/cast.py
5 @@ -823,6 +823,8 @@ def astype_nansafe(arr, dtype, copy: bool = True, skipna: bool =

False):
6 if is_object_dtype(dtype):
7 return tslib.ints_to_pydatetime(arr.view(np.int64))
8 elif dtype == np.int64:
9 + if isna(arr).any():

10 + raise ValueError("Cannot convert NaT values to integer")
11 return arr.view(dtype)

Fig. 5 Example of code changes from Pandas 101 (https://github.com/pandas-dev/pand
as/commit/27b713ba677869893552cbeff6bc98a5dd231950)

It is possible that the different pattern in the object instantiation between
Python and Java results in the worse performance in BugsInPy.

5.3 On the impact of potential biases toward SBFL techniques

The set of faults in BugsInPy does not bias the results toward a
particular SBFL technique. We also investigate whether the set of faults
in BugsInPy bias the results towards a particular technique. To analyze the
impact of this potential bias, we conduct an additional evaluation to check this
hypothesis. For this purpose, we apply the five SBFL techniques for each cate-
gory of fault subset in BugsInPy (e.g., Method Call, Conditional, Assignment,
etc.). Table 19 shows the results in the three most commonly found categories
of faults (i.e., Method Call, Assignment, and Conditional). We find that the
results of the evaluation on each fault category are inline with the previous
finding, where we found that the Tarantula SBFL technique performs the best
but does not have a statistically significant difference compared to Barinel and
Ochiai. Considering that we have the same findings in the evaluation using the
whole dataset and using the subset of the dataset, we believe that the set of
faults in BugsInPy does not bias the results towards a particular technique.

5.4 On the effect of fault categories toward SBFL performance

The category of faults in BugsInPy affects the performance of SBFL
technique. We are also interested in whether the different category of faults in
BugsInPy has any effect on the performance of the SBFL technique. To analyze
this, we conduct an evaluation by applying the SBFL techniques on the subset
of faults based on the categories described in Section 5.2. Figure 10 shows the
results from Ochiai and DStar SBFL techniques. It shows the number of faults
that are localized into non-overlapping intervals of [1; 5], (5; 10], (10; 200], or
(200; . . .]. For example, [1;5] means that the fault is localized in between 1 to 5
position, (200,. . .] means that the fault is localized in the position higher than

https://github.com/pandas-dev/pandas/commit/27b713ba677869893552cbeff6bc98a5dd231950
https://github.com/pandas-dev/pandas/commit/27b713ba677869893552cbeff6bc98a5dd231950

Evaluating SBFL Techniques on Python Projects 35

Table 18 Fault Categories based on Repair Patterns and Their Descriptions

Category Description

Assignment This category includes changes made on simple assignment operator,
unary increment, decrement operator, and assignment compound of
an arithmetic operator. The changes can be derived from the addition,
modification, and removal of assignments. For example, modification
of increment to decrement.

Conditional This category includes the changes that are made on the conditional
statement such as if, if-else, if-elif-else, and else. The changes can be
in the form of conditional branch addition or removal. It can also be
the modification of the conditional expression.

Loop The loops considered in Python are for and while. The changes that
are related to this category are loop addition, removal, and modifica-
tion.

Method Call The changes included in this category are the ones related to the
method call. This includes cases containing modification of a method
call (e.g., moving method call, changing a parameter in a method call,
etc.), adding an invocation of a method call, and removing an existing
method call.

Method Definition The changes related to the method definitions (MD) are MD addi-
tion, MD removal, MD modification (e.g., change method parameters,
method renaming, etc.)

Object Instantiation In Java this category is observed by the keyword new. Meanwhile,
Python does not utilize the new keyword. Rather, the object instan-
tiation pattern in Python is similar to a method call. Therefore, to
determine whether the statement is an object instantiation, we need
to check whether the invoked method call is the name of a class or not.
The following are some examples of object instantiation in Python:

1 Class Point:

2 def __init__(self):

3 self.x = 0

4 self.y = 0

5 p = Point() #Object instantiation of type

Point

1 from point import Point

2 q = Point() #Object instantiation of imported

type Point

Exception The changes that are included in this category are related to the
exception handling, such as addition or removal of a try-catch block
or raise statement.

Return The changes that are included in this category are those whose changes
are related to the return statement.

Variable Changes that change the variable declaration and modification in the
usage of variables are included in this category. For example, adding
new variable declarations, replacing the usage of a variable with an-
other variable, replacing the usage of a method call with a variable,
etc. In Python, the pattern for variable declarations is the same as
assignments. Thus, we need to check whether the variable already ex-
isted (i.e., already declared) before in the code to determine whether
it is considered as an assignment or variable declaration.

Type Changes that utilize explicit type conversion. The explicit type con-
version is done by using a method call to convert variable types such
as str(), int(), long(), etc. For example, str() can be used to change
the variable type from integer to string. The fault-fixes that are in-
cluded in this category are related to the explicit type conversion,
such as addition, removal, or modification.

36 Ratnadira Widyasari et al.

(a)

(b)

Fig. 6 Interval statistic for every subset fault category in (a) Defects4J and (b) BugsInPy
using Tarantula. The color of the bar indicate the faults that are localized on the specific
interval. For example, there are 16% of faults that are localized in Top-5 for the Loop
category in BugsInPy.

1 + abstract class SerializableAnswer implements Answer<Object>, Serializable {
2 + }

Fig. 7 Changes to fix fault in Mockito 23, type addition.

200, and so on. We find that in the Type category, followed by the Return,
Exception, and Variable, SBFL techniques localize the highest percentage of
faults in top-5 and Top-10 compared to the other fault categories. We also
find that for Object Instantiation and Method Definition categories, it is more
likely that the faults are not localized in the top-5 and top-10 positions. These

Evaluating SBFL Techniques on Python Projects 37

1 - Map<TemplateType, JSType> inferred =
2 + Map<TemplateType, JSType> inferred = Maps.filterKeys(
3 - inferTemplateTypesFromParameters(fnType, n);
4 + inferTemplateTypesFromParameters(fnType, n),
5 + new Predicate<TemplateType() {
6 + @Override
7 + public boolean apply(TemplateType key) {
8 + return keys.contains(key);
9 + }}

10 +);

Fig. 8 Changes to fix fault in Closure 112, type implemented interface modification.

1 - implements RandomGenerator {
2 + implements RandomGenerator,
3 + Serializable{

Fig. 9 Changes to fix fault in Math 12, type implemented interface modification.

Table 19 Percentage of fault statements that appear within Top-5, Top-10, and Top-200
on different type of faults (repair action) in best case debugging scenario. Result in bold
indicates dataset that has higher percentage of faults that are localized in top-k.

Method Call
Technique Top-5 Top-10 Top-200
Tarantula 15% 22% 56%
Barinel 15% 22% 56%
Ochiai 16% 22% 51%
Dstar 10% 15% 40%
OP 8% 13% 40%

Assignment
Technique Top-5 Top-10 Top-200
Tarantula 13% 21% 56%
Barinel 12% 21% 56%
Ochiai 14% 21% 50%
Dstar 9% 15% 39%
OP 6% 12% 40%

Conditional
Technique Top-5 Top-10 Top-200
Tarantula 11% 18% 55%
Barinel 11% 18% 55%
Ochiai 12% 18% 51%
Dstar 8% 13% 37%
OP 6% 10% 37%

findings indicate that there is a relationship between the category of faults
and the effectiveness of fault localization.

5.5 Implications of Our Findings

Our study corroborates Pearson et al.’s findings on Java real faults, where
the relative performances of examined SBFL techniques on Python real faults
either do not match the findings of preceding studies on artificial faults or

38 Ratnadira Widyasari et al.

(a)

(b)

Fig. 10 Interval statistic for every subset fault category in BugsInPy using (a) DStar and
(b) Ochiai. The color of the bar indicate the faults that are localized on the specific interval.
For example, there are 23% of faults that are localized in Top-10 for the Loop category using
DStar.

have statistically insignificant differences. This has several implications for
practitioners and researchers:

Seeking the “absolute best” SBFL technique is not so important
in practice. For practitioners, the lack of significant difference in effectiveness
between the top 3 popular SBFL techniques (Tarantula, Barinel, and Ochiai)
on real-world Python faults implies that the selection of SBFL tools should
not be overly focused on the technique used, at least for Python projects.
As long as the tools being considered to use one of the top three techniques,
selection efforts should be focused on other factors such as ease-of-use, ability

Evaluating SBFL Techniques on Python Projects 39

to integrate with a currently-used development environment, or quality of
documentation.

Investigation of other features in addition to code coverage may
prove to be beneficial. From our evaluation, we find that the faults in
BugsInPy are harder to identify compared to faults in Defects4J. A cause of
this is the occurrences of faults that are difficult to localize due to different
program spectra having the same coverage. Such faults occur with high enough
frequency to cause statistically significant differences between the examined
SBFL techniques’ effectiveness on BugsInPy faults and their effectiveness on
Defects4J faults. This highlights a practical issue with the application of these
SBFL techniques on real-world projects, and emphasizes the need to research
ways to mitigate this issue. For example, work by Sohn and Yoo (2017) ex-
tend SBFL with code and change metrics, such as size, age, and code churn.
They use machine learning to process SBFL suspiciousness values from exist-
ing SBFL formulas with code and change metrics as features. In addition, this
also emphasizes the need to examine the prevalence of similar issues in other
popular languages, such as JavaScript, Ruby, or C#. An empirical study of
real-world projects written in those languages will enable researchers and prac-
titioners alike to gain a more realistic view of the general level of performance
that can be expected from current popular SBFL techniques, particularly in
their language of choice.

Appropriate metrics are important when evaluating SBFL tech-
niques. Our experimental results measured using different metrics highlight
how the choice of metrics can affect the ranking of a technique. For example,
DStar produces a better result than OP on top-k and improvement metrics.
However, OP EXAM score is lower than DStar, which indicates that OP per-
forms better. The discrepancy highlights the value of studying the suitability
of existing metrics for different use cases to facilitate the usage of consistent
metrics across different studies. This investigation may be conducted with
help of practitioners, for example as with a recent study by Parnin and Orso
(2011) which finds that practitioners value the absolute ranking of the fault
localization result rather than the percentage.

Evaluations of SBFL techniques should be done on real faults. Our
finding that newer techniques do not translate to better performance on real
Python faults (and may even be outperformed by old technique) emphasizes
that researchers should evaluate future SBFL technique developments on real
faults, to ensure that the new techniques will indeed perform significantly bet-
ter in real-world situations. This echoes observations in Pearson et al. (2017).
Since there may be situations in which the collection of a large amount of
real faults is not feasible, it is also important for researchers to gain a better
understanding of the characteristics of real faults and ways to generate more
realistic artificial faults (along the lines of works by Patra and Pradel (2021)
and Tufano et al. (2020)). These will enable researchers to use artificial faults
in SBFL experiments while getting results that more closely mirror how the
techniques will perform on real faults.

40 Ratnadira Widyasari et al.

There is value in investigating effective SBFL technique com-
bination. Our study shows that in certain cases, lower-performing SBFL
techniques can still produce an improvement over the higher-performing tech-
niques. This highlights the benefit of allocating more research effort to bet-
ter ways to combine the techniques. Currently, there have been some works
proposing a combination of SBFL techniques (Xuan and Monperrus, 2014a;
Lucia et al., 2014), as well as augmentation of SBFL techniques, for exam-
ple through the addition of PageRank algorithm (Zhang et al., 2017). More
broadly, there have been works proposing combinations involving SBFL and
other families of fault localization techniques. These include a hybrid between
SBFL and mutation-based fault localization (MBFL) proposed by Pearson
et al. (2017), and a learning-to-rank approach proposed by Zou et al. (2019)
to combine techniques from different families of fault localization techniques.
However, while such approaches to combine techniques from different fam-
ilies are reported to yield good results, a limitation of such combination is
that some technique families (particularly MBFL) can be orders of magnitude
slower than SBFL, which is a lightweight technique. Therefore, research into
a more effective combination or augmentation of SBFL will remain important
for applications where performance is a priority. Further, the improvements
produced by lower-performing techniques also indicate a need to better un-
derstand how specific fault characteristics benefit one SBFL technique over
another. Improved understanding of the interaction between fault character-
istics and different techniques’ performance will also benefit practitioners, as
they will be able to make a more informed choice regarding technique based
on their specific project and common fault types.

5.6 Threats to Validity

A source of threat to construct validity is the suitability of the metrics we
use for our evaluation. A number of metrics have been proposed to measure
the performance of fault localization techniques. To ensure the suitability of
the metrics we use, we include metrics that are frequently used in prior works
related to the evaluation of SBFL techniques such as improvement (Horváth
et al., 2020), EXAM score (Abreu et al., 2009b; Naish et al., 2011a; Wong
et al., 2016; Pearson et al., 2017; Le et al., 2015a), top-k (Pearson et al., 2017;
Horváth et al., 2020; Le et al., 2015a), FLT ranking (Pearson et al., 2017),
and tournament ranking (Pearson et al., 2017).

A source of threat to internal validity is the possibility of faults in the
SBFL score computation. At the time of writing, we are not aware of any
Python libraries that provide the implementation of SBFL techniques, so we
use our own implementation of the techniques. We mitigate the risk of incorrect
implementation using two approaches. First, for each of the SBFL techniques,
we follow the formula defined in prior works (Abreu et al., 2006; Jones et al.,
2001; Wong et al., 2013; Naish et al., 2011b; Abreu et al., 2009b). Second, to

Evaluating SBFL Techniques on Python Projects 41

avoid errors in coverage calculation, we utilize coverage.py6, a popular library
to compute coverage of a Python project, before applying the different SBFL
techniques to the resulting coverage. We believe this reduces the threat of
potential implementation errors. Further, we have also created a replication
package so that other researchers can validate our findings. The replication
package is available at https://github.com/soarsmu/Evaluating SBFL Bug

sInPy.

Another threat to internal validity relates to the construction of the Python
fault dataset (BugsInPy). In Defects4J, to make sure that the fault is isolated,
the authors did a preprocessing step to make sure that each version only
contains a single fault. For example, if version A contains two different faults
F1 and F2, version A is divided into two different buggy versions that handle
each fault individually. Similarly, in the creation of BugsInPy, to make sure
that each version is isolated, the authors of BugsInPy analyze whether the fault
fixing for every committed version is isolated (i.e., the changes do not include
other fault fixing or cosmetic changes). If the changes to fix the fault are not
isolated, the authors of BugsInPy remove the fault from the dataset. For each
version of fault, two authors of BugsInPy labeled the data independently to
reduce bias. They only take the fault version that is labeled as isolated by
all the labelers. Considering this approach, we believe that the threat of the
versions that are not isolated for BugsInPy and Defects4J is minimal.

The threat to the external validity of our study relates to the generalizabil-
ity of our findings. We attempt to mitigate this threat by choosing a dataset
that comprises a diverse range of software and faults. In this work we focus
on Python programs and the findings here may not generalize to other pro-
gramming languages. We encourage more researchers to replicate our findings
in additional popular languages (e.g., Javascript).

In this study, we find several differences in the performance of SBFL tech-
niques between BugsInPy and Defects4J datasets, which may indicate that
there are some differences in the fault patterns between these two datasets
written in Java and Python, respectively. However, our findings do not in-
dicate that the differences are only solely due to the programming language
differences. Rather, we find that there are multiple factors that contribute
to the differences (i.e., programming language, faults’ nature, etc.). Future
research is encouraged in this direction.

6 Conclusion and Future Work

In this work, we perform an evaluation of five popular SBFL techniques on a
set of 493 real faults in 17 real-world Python projects. The results of our SBFL
technique comparison using Python real faults (in BugsInPy) are in line with
the findings of Pearson et al. (2017) on Java (in Defects4J), which contradicts
some claims made in preceding studies done on artificial faults. Our results

6 https://coverage.readthedocs.io/en/coverage-5.1/

https://github.com/soarsmu/Evaluating_SBFL_BugsInPy
https://github.com/soarsmu/Evaluating_SBFL_BugsInPy

42 Ratnadira Widyasari et al.

suggest that the claim from the previous studies regarding the performance
of SBFL techniques does not hold on Python real faults (in BugsInPy). This
emphasizes that future developments of SBFL techniques should be done in
conjunction with evaluations on real faults to ensure new techniques can in-
deed produce better performance (as compared to classic ones like Tarantula)
in real-world situations. Further, our finding indicates the need to understand
the characteristics of real faults that are currently not well-represented in ar-
tificial fault datasets. Our finding also suggests that given the choice between
tools that implement Tarantula, Barinel, or Ochiai, practitioners can simply
choose based on characteristics such as ease-of-use or documentation quality,
due to the statistically insignificant performance difference between the three
techniques. Our analysis of real faults from the BugsInPy dataset we use re-
veals that the faults are harder to identify using SBFL techniques compared
to Java’s real faults in Defects4J. This finding (together with the fact that
Python is now more popular than Java) highlights that BugsInPy is a chal-
lenging and realistic dataset that SBFL researchers may want to consider in
the future.

We encourage future research to investigate factors and characteristics of
defects and program spectra that most significantly impact SBFL performance.
Another direction for future work is to investigate the most effective way to
combine different SBFL techniques to boost overall performance.

Declarations

Conflicts of Interests/Competing Interests

The authors have no conflicts of interest to declare that are relevant to this
paper.

References

Abreu R, Van Gemund AJ (2009) A low-cost approximate minimal hitting set
algorithm and its application to model-based diagnosis. In: SARA, Citeseer,
vol 9, pp 2–9

Abreu R, Zoeteweij P, Van Gemund AJ (2006) An evaluation of similarity
coefficients for software fault localization. In: 2006 12th Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC’06), IEEE, pp
39–46

Abreu R, Zoeteweij P, van Gemund AJC (2007) On the accuracy of spectrum-
based fault localization. In: Proceedings of the Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION, IEEE
Computer Society, USA, TAICPART-MUTATION ’07, p 89–98

Abreu R, Zoeteweij P, Golsteijn R, Van Gemund AJ (2009a) A practical evalu-
ation of spectrum-based fault localization. Journal of Systems and Software
82(11):1780–1792

Evaluating SBFL Techniques on Python Projects 43

Abreu R, Zoeteweij P, Van Gemund AJ (2009b) Spectrum-based multiple fault
localization. In: 2009 IEEE/ACM International Conference on Automated
Software Engineering, IEEE, pp 88–99

Ali S, Andrews JH, Dhandapani T, Wang W (2009) Evaluating the accuracy of
fault localization techniques. In: 2009 IEEE/ACM International Conference
on Automated Software Engineering, IEEE, pp 76–87

Baah GK, Podgurski A, Harrold MJ (2010) The probabilistic program depen-
dence graph and its application to fault diagnosis. IEEE Transactions on
Software Engineering 36(4):528–545

Bouillon P, Krinke J, Meyer N, Steimann F (2007) Ezunit: A framework for
associating failed unit tests with potential programming errors. In: Interna-
tional Conference on Extreme Programming and Agile Processes in Software
Engineering, Springer, pp 101–104

Briand LC, Labiche Y, Liu X (2007) Using machine learning to support de-
bugging with tarantula. In: The 18th IEEE International Symposium on
Software Reliability (ISSRE’07), IEEE, pp 137–146

Cantor AB (1996) Sample-size calculations for cohen’s kappa. Psychological
methods 1(2):150

Chaki S, Groce A, Strichman O (2004) Explaining abstract counterexamples.
In: Proceedings of the 12th ACM SIGSOFT twelfth international sympo-
sium on Foundations of software engineering, pp 73–82

Chen D, Stolee KT, Menzies T (2019) Replication can improve prior results: A
github study of pull request acceptance. In: 2019 IEEE/ACM 27th Interna-
tional Conference on Program Comprehension (ICPC), IEEE, pp 179–190

Cifuentes C, Hoermann C, Keynes N, Li L, Long S, Mealy E, Mounteney
M, Scholz B (2009) Begbunch: Benchmarking for c bug detection tools. In:
Proceedings of the 2nd International Workshop on Defects in Large Soft-
ware Systems: Held in conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2009), pp 16–20

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological bulletin 114(3):494

D’Agostino R (1971) An omnibus test of normality for moderate and large
sample sizes. Biometrika 58(34):1–348

D’Agostino R, Pearson ES (1973) Tests for departure from normality. empirical
results for the distributions of b 2 and60(3):613–622

Debroy V, Wong WE, Xu X, Choi B (2010) A grouping-based strategy to
improve the effectiveness of fault localization techniques. In: 2010 10th In-
ternational Conference on Quality Software, IEEE, pp 13–22

DeVellis RF (2005) Inter-rater reliability. encyclopedia of social measurement
Durieux T, Abreu R (2019) Critical review of bugswarm for fault localization

and program repair. arXiv preprint arXiv:190509375
Ghanbari A, Benton S, Zhang L (2019) Practical program repair via byte-

code mutation. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp 19–30

Gouveia C, Campos J, Abreu R (2013) Using html5 visualizations in software
fault localization. In: 2013 First IEEE Working Conference on Software Vi-

44 Ratnadira Widyasari et al.

sualization (VISSOFT), pp 1–10, DOI 10.1109/VISSOFT.2013.6650539
Hao D, Zhang L, Zhang L, Sun J, Mei H (2009) Vida: Visual interactive debug-

ging. In: 2009 IEEE 31st International Conference on Software Engineering,
IEEE, pp 583–586

He H, Ren J, Zhao G, He H (2020) Enhancing spectrum-based fault localiza-
tion using fault influence propagation. IEEE Access 8:18497–18513

Horváth F, Beszédes Á, Vancsics B, Balogh G, Vidács L, Gyimóthy T (2020)
Experiments with interactive fault localization using simulated and real
users. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, pp 290–300

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments on the
effectiveness of dataflow-and control-flow-based test adequacy criteria. In:
Proceedings of 16th International conference on Software engineering, IEEE,
pp 191–200

Jiang J, Xiong Y, Zhang H, Gao Q, Chen X (2018) Shaping program repair
space with existing patches and similar code. In: Proceedings of the 27th
ACM SIGSOFT international symposium on software testing and analysis,
pp 298–309

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic
fault-localization technique. In: Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering, pp 273–282

Jones JA, Harrold MJ, Stasko JT (2001) Visualization for fault localization. In:
in Proceedings of ICSE 2001 Workshop on Software Visualization, Citeseer

Ju X, Jiang S, Chen X, Wang X, Zhang Y, Cao H (2014) Hsfal: Effective fault
localization using hybrid spectrum of full slices and execution slices. Journal
of Systems and Software 90:3–17

Just R (2014) The major mutation framework: Efficient and scalable mutation
analysis for java. In: Proceedings of the 2014 international symposium on
software testing and analysis, pp 433–436

Just R, Jalali D, Ernst MD (2014a) Defects4j: A database of existing faults
to enable controlled testing studies for java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis, As-
sociation for Computing Machinery, New York, NY, USA, ISSTA 2014, p
437–440, DOI 10.1145/2610384.2628055, URL https://doi.org/10.114

5/2610384.2628055

Just R, Jalali D, Ernst MD (2014b) Defects4j: A database of existing faults
to enable controlled testing studies for java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis, pp
437–440

Just R, Parnin C, Drosos I, Ernst MD (2018) Comparing developer-provided
to user-provided tests for fault localization and automated program repair.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Association for Computing Machinery, New
York, NY, USA, ISSTA 2018, p 287–297, DOI 10.1145/3213846.3213870,
URL https://doi.org/10.1145/3213846.3213870

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3213846.3213870

Evaluating SBFL Techniques on Python Projects 45

Kim J, Lee E (2014) Empirical evaluation of existing algorithms of spectrum
based fault localization. In: The International Conference on Information
Networking 2014 (ICOIN2014), IEEE, pp 346–351

Kitchenham B (2008) The role of replications in empirical software engineer-
ing—a word of warning. Empirical Software Engineering 13(2):219–221

Koca F, Sözer H, Abreu R (2013) Spectrum-based fault localization for di-
agnosing concurrency faults. In: IFIP International Conference on Testing
Software and Systems, Springer, pp 239–254

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on auto-
mated fault localization. In: Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, pp 165–176

Könighofer R, Bloem R (2011) Automated error localization and correction for
imperative programs. In: 2011 Formal Methods in Computer-Aided Design
(FMCAD), IEEE, pp 91–100

Le TB, Thung F, Lo D (2013) Theory and practice, do they match? a case with
spectrum-based fault localization. In: 2013 IEEE International Conference
on Software Maintenance, pp 380–383, DOI 10.1109/ICSM.2013.52

Le TDB, Thung F, Lo D (2013) Theory and practice, do they match? a case
with spectrum-based fault localization. In: 2013 IEEE International Confer-
ence on Software Maintenance, IEEE, pp 380–383

Le TDB, Lo D, Li M (2015a) Constrained feature selection for localizing faults.
In: 2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), IEEE, pp 501–505

Le TDB, Lo D, Thung F (2015b) Should i follow this fault localization tool’s
output? Empirical Softw Engg 20(5):1237–1274, DOI 10.1007/s10664-014-9
349-1, URL https://doi.org/10.1007/s10664-014-9349-1

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer
W (2015) The manybugs and introclass benchmarks for automated repair of
c programs. IEEE Transactions on Software Engineering 41(12):1236–1256

Lindsay RM, Ehrenberg AS (1993) The design of replicated studies. The Amer-
ican Statistician 47(3):217–228

Lo D, Jiang L, Budi A, et al. (2010) Comprehensive evaluation of association
measures for fault localization. In: 2010 IEEE International Conference on
Software Maintenance, IEEE, pp 1–10

Long F, Rinard M (2016) An analysis of the search spaces for generate and
validate patch generation systems. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE, pp 702–713

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the evaluation of software
defect detection tools, vol 5

Lucia, Lo D, Xia X (2014) Fusion fault localizers. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering,
pp 127–138

Martinez M, Monperrus M (2015) Mining software repair models for reason-
ing on the search space of automated program fixing. Empirical Software
Engineering 20(1):176–205

https://doi.org/10.1007/s10664-014-9349-1

46 Ratnadira Widyasari et al.

Moon S, Kim Y, Kim M, Yoo S (2014) Ask the mutants: Mutating faulty pro-
grams for fault localization. In: 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation, IEEE, pp 153–162

Naish L, Lee HJ, Ramamohanarao K (2011a) A model for spectra-based soft-
ware diagnosis. ACM Trans Softw Eng Methodol 20(3), DOI 10.1145/2000
791.2000795, URL https://doi.org/10.1145/2000791.2000795

Naish L, Lee HJ, Ramamohanarao K (2011b) A model for spectra-based soft-
ware diagnosis. ACM Transactions on software engineering and methodology
(TOSEM) 20(3):1–32

Pan K, Kim S, Whitehead EJ (2009) Toward an understanding of bug fix
patterns. Empirical Softw Engg 14(3):286–315, DOI 10.1007/s10664-008-9
077-5, URL https://doi.org/10.1007/s10664-008-9077-5

Parnin C, Orso A (2011) Are automated debugging techniques actually help-
ing programmers? In: Proceedings of the 2011 international symposium on
software testing and analysis, pp 199–209

Patra J, Pradel M (2021) Semantic bug seeding: a learning-based approach
for creating realistic bugs. In: Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp 906–918

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller
B (2017) Evaluating and improving fault localization. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pp 609–620,
DOI 10.1109/ICSE.2017.62

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller
B (2017) Evaluating and improving fault localization. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), IEEE, pp
609–620

Planning S (2002) The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology

Rayson P, Berridge D, Francis B (2004) Extending the cochran rule for the
comparison of word frequencies between corpora. In: 7th International Con-
ference on Statistical analysis of textual data (JADT 2004), pp 926–936

Ren L, Shan S, xu X, Liu y (2020) StarIn: An Approach to Predict the Popular-
ity of GitHub Repository, pp 258–273. DOI 10.1007/978-981-15-7984-4 20

Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries.
In: 18th IEEE International Conference on Automated Software Engineer-
ing, 2003. Proceedings., IEEE, pp 30–39

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring
methods for evaluating group differences on the nsse and other surveys:
Are the t-test and cohen’sd indices the most appropriate choices. In: annual
meeting of the Southern Association for Institutional Research, Citeseer, pp
1–51

Ruthruff JR, Burnett M, Rothermel G (2005) An empirical study of fault local-
ization for end-user programmers. In: Proceedings of the 27th International
Conference on Software Engineering, pp 352–361

https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1007/s10664-008-9077-5

Evaluating SBFL Techniques on Python Projects 47

Saha RK, Lyu Y, Lam W, Yoshida H, Prasad MR (2018) Bugs. jar: a large-
scale, diverse dataset of real-world java bugs. In: Proceedings of the 15th
International Conference on Mining Software Repositories, pp 10–13

Santos A, Vegas S, Uyaguari F, Dieste O, Turhan B, Juristo N (2020) In-
creasing validity through replication: an illustrative tdd case. arXiv preprint
arXiv:200405335

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in
empirical software engineering. Empirical software engineering 13(2):211–
218

Sobreira V, Durieux T, Madeiral F, Monperrus M, de Almeida Maia M (2018)
Dissection of a bug dataset: Anatomy of 395 patches from defects4j. In:
2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), IEEE, pp 130–140

Sohn J, Yoo S (2017) Fluccs: Using code and change metrics to improve fault
localization. In: Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp 273–283

Steimann F, Frenkel M, Abreu R (2013) Threats to the validity and value of
empirical assessments of the accuracy of coverage-based fault locators. In:
Proceedings of the 2013 International Symposium on Software Testing and
Analysis, pp 314–324

Tallarida RJ, Murray RB (1987) Chi-square test. In: Manual of pharmacologic
calculations, Springer, pp 140–142

Tomassi DA, Dmeiri N, Wang Y, Bhowmick A, Liu YC, Devanbu PT, Vasilescu
B, Rubio-González C (2019) Bugswarm: Mining and continuously growing
a dataset of reproducible failures and fixes. In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), IEEE, pp 339–349

Tufano M, Kimko J, Wang S, Watson C, Bavota G, Di Penta M, Poshyvanyk D
(2020) Deepmutation: A neural mutation tool. In: 42nd ACM/IEEE Interna-
tional Conference on Software Engineering: Companion, ICSE-Companion
2020, Institute of Electrical and Electronics Engineers Inc., pp 29–33

Vancsics B, Szatmári A, Beszédes Á (2020) Relationship between the effec-
tiveness of spectrum-based fault localization and bug-fix types in javascript
programs. In: 2020 IEEE 27th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), IEEE, pp 308–319

Vessey I (1985) Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23(5):459–494

Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch gen-
eration for better automated program repair. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), IEEE, pp 1–11

Widyasari R, Sim SQ, Lok C, Qi H, Phan J, Tay Q, Tan C, Wee F, Tan JE,
Yieh Y, et al. (2020) Bugsinpy: a database of existing bugs in python pro-
grams to enable controlled testing and debugging studies. In: Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp 1556–1560

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Break-
throughs in statistics, Springer, pp 196–202

48 Ratnadira Widyasari et al.

Wong E, Wei T, Qi Y, Zhao L (2008) A crosstab-based statistical method for
effective fault localization. In: 2008 1st international conference on software
testing, verification, and validation, IEEE, pp 42–51

Wong WE, Debroy V, Surampudi A, Kim H, Siok MF (2010) Recent catas-
trophic accidents: Investigating how software was responsible. In: 2010
Fourth International Conference on Secure Software Integration and Re-
liability Improvement, IEEE, pp 14–22

Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B (2011) Effective
software fault localization using an rbf neural network. IEEE Transactions
on Reliability 61(1):149–169

Wong WE, Debroy V, Gao R, Li Y (2013) The dstar method for effective
software fault localization. IEEE Transactions on Reliability 63(1):290–308

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault
localization. IEEE Transactions on Software Engineering 42(8):707–740

Wright CS, Zia TA (2011) A quantitative analysis into the economics of cor-
recting software bugs. In: Computational Intelligence in Security for Infor-
mation Systems, Springer, pp 198–205

Xia X, Bao L, Lo D, Li S (2016) “automated debugging considered harmful”
considered harmful: A user study revisiting the usefulness of spectra-based
fault localization techniques with professionals using real bugs from large
systems. In: 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, pp 267–278

Xie X, Chen TY, Kuo FC, Xu B (2013) A theoretical analysis of the risk eval-
uation formulas for spectrum-based fault localization. ACM Transactions
on Software Engineering and Methodology (TOSEM) 22(4):1–40

Xie X, Liu Z, Song S, Chen Z, Xuan J, Xu B (2016) Revisit of automatic
debugging via human focus-tracking analysis. In: Proceedings of the 38th
International Conference on Software Engineering, pp 808–819

Xuan J, Monperrus M (2014a) Learning to combine multiple ranking metrics
for fault localization. In: 2014 IEEE International Conference on Software
Maintenance and Evolution, IEEE, pp 191–200

Xuan J, Monperrus M (2014b) Test case purification for improving fault lo-
calization. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp 52–63

Zhang M, Li X, Zhang L, Khurshid S (2017) Boosting spectrum-based fault
localization using pagerank. In: Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp 261–272

Zou D, Liang J, Xiong Y, Ernst MD, Zhang L (2019) An empirical study
of fault localization families and their combinations. IEEE Transactions on
Software Engineering

Evaluating SBFL Techniques on Python Projects 49
T

a
b

le
2
0

C
li
ff

’s
d

eff
ec

t
si

ze
a
n

d
W

il
co

x
o
n

ra
n

k
-s

u
m

te
st

re
su

lt
s

o
n

to
p

-k
m

et
ri

cs
in

a
ll

d
eb

u
g
g
in

g
sc

en
a
ri

o
s

(i
.e

.,
b

es
t-

ca
se

,
a
v
er

a
g
e-

ca
se

,
w

o
rs

t-
ca

se
).

“
*
”

In
d

ic
a
te

s
th

a
t

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

to
p

-k
d

is
tr

ib
u

ti
o
n

is
st

a
ti

st
ic

a
ll
y

si
g
n

ifi
ca

n
t

a
t

5
%

le
v
el

,
i.

e.
p
<

0
.0

5
.

“
(n

eg
li
g
i-

b
le

(N
)/

sm
a
ll
(S

)/
m

ed
iu

m
(M

)/
la

rg
e(

L
))

”
d

en
o
te

th
e

ca
te

g
o
ry

o
f

th
e

eff
ec

t
si

ze
.

T
h

e
“
-”

sy
m

b
o
l

m
ea

n
s

th
a
t

th
e

te
ch

n
iq

u
es

in
th

e
co

lu
m

n
p

er
fo

rm
s

b
et

te
r

th
a
n

th
o
se

in
th

e
ro

w
.

F
o
r

ex
a
m

p
le

,
co

m
p

a
ri

so
n

o
n

T
a
ra

n
tu

la
(c

o
lu

m
n

)
w

it
h

B
a
ri

n
el

(r
o
w

)
th

a
t

h
a
v
e

v
a
lu

e
(-
0
.0
5
)
N

,
m

ea
n

in
g

T
a
ra

n
tu

la
is

th
e

w
in

n
er

w
it

h
o
u

t
si

g
n

ifi
ca

n
t

d
iff

er
en

ce
s

a
n

d
n
eg

li
g
ib

le
eff

ec
t

si
ze

B
e
st

-c
a
se

D
e
b
u
g
g
in

g
S
c
e
n
a
r
io

T
ec

h
n

iq
u

e
T

a
ra

n
tu

la
B

a
ri

n
el

O
ch

ia
i

D
S

ta
r

O
P

2
T

o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
a
ra

n
tu

la
-

(-
0
.0
5
)
N

(-
0
.0
3
)
N

(-
0
.0
0
4
)
N

(0
.0
7
)
N

(0
.0
5
)
N

(-
0
.0
4
)
N

(-
0
.3

1
)*

S
(-

0
.2

7
)*

S
(-

0
.2

8
)*

S
-0

.4
9
*

L
-0

.4
2
*

M
-0

.3
4
*

M
B

a
ri

n
el

(0
.0
5
)
N

(0
.0
3
)
N

(0
.0
0
4
)
N

-
(0
.1
2
)
N

(0
.0
8
)
N

(-
0
.0
4
)
N

(-
0
.2

8
)*

S
(-

0
.2

6
)*

S
(-

0
.2

8
)*

S
-0

.4
6
*

M
-0

.4
1
*

M
-0

.3
3
*

M
O

ch
a
i

(-
0
.0
7
)
N

(-
0
.0
5
)
N

(0
.0
4
)
N

(-
0
.1
2
)
N

(-
0
.0
8
)
N

(0
.0
4
)
N

-
-0

.3
8
*

M
(-

0
.3

2
)*

S
(-

0
.2

6
)*

S
-0

.5
6
*

L
-0

.4
7
*

M
(-

0
.3

2
)*

S
D

S
ta

r
(0

.3
1
)*

S
(0

.2
7
)*

S
(0

.2
8
)*

S
(0

.2
8
)*

S
(0

.2
6
)*

S
(0

.2
8
)*

S
0
.3

8
*

M
(0

.3
2
)*

S
(0

.2
6
)*

S
-

(-
0
.2

8
)*

S
(-

0
.2

4
)*

S
(-
0
.0
8
)
N

O
P

2
0
.4

9
*

L
0
.4

2
*

M
0
.3

4
*

M
0
.4

6
*

M
0
.4

1
*

M
0
.3

3
*

M
0
.5

6
*

L
0
.4

7
*

M
(0

.3
2
)*

S
(0

.2
8
)*

S
(0

.2
4
)*

S
(0
.0
8
)
N

-

A
v
e
r
a
g
e
-c

a
se

D
e
b
u
g
g
in

g
S
c
e
n
a
r
io

T
ec

h
n

iq
u

e
T

a
ra

n
tu

la
B

a
ri

n
el

O
ch

ia
i

D
S

ta
r

O
P

2
T

o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-5
T

o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
a
ra

n
tu

la
-

(-
0
.1
2
)
N

(-
0
.0
6
)
N

(-
0
.0
0
5
)
N

(0
.1
0
)
N

(0
.0
5
)
N

(-
0
.0
5
)
N

(-
0
.2

3
)

S
(-

0
.2

2
)*

S
(-

0
.2

9
)*

S
-0

.4
4
*

M
-0

.4
2
*

M
-0

.3
5
*

M
B

a
ri

n
el

(0
.1
2
)
N

(0
.0
6
)
N

(0
.0
0
5
)
N

-
(0
.2
1
)
S

(0
.1
0
)
N

(-
0
.0
4
)
N

(0
.1
5
)
N

(0
.1

8
)

S
(0

.2
8
)*

S
-0

.3
8
*

M
-0

.3
8
*

M
-0

.3
5
*

M
O

ch
a
i

(-
0
.1
0
)
N

(-
0
.0
5
)
N

(0
.0
5
)
N

(-
0
.2

1
)

S
(-
0
.1
0
)
N

(0
.0
4
)
N

-
(-

0
.3

1
)*

S
(-

0
.2

7
)*

S
(-

0
.2

6
)*

S
-0

.5
0
*

L
-0

.4
5
*

M
(-

0
.3

4
)*

S
D

S
ta

r
(0

.2
3
)

S
(0

.2
2
)*

S
(0

.2
9
)*

S
(-
0
.1
5
)
N

(-
0
.1

8
)

S
(-

0
.2

8
)*

S
(0

.3
1
)*

S
(0

.2
7
)*

S
(0

.2
6
)*

S
-

(-
0
.2

8
)

S
(-

0
.2

6
)

S
(-
0
.0
9
)
N

O
P

2
0
.4

4
*

M
0
.4

2
*

M
0
.3

5
*

M
0
.3

8
*

M
0
.3

8
*

M
0
.3

5
*

M
0
.5

0
*

L
0
.4

5
*

M
(0

.3
4
)*

S
(0

.2
8
)

S
(0

.2
6
)

S
(0
.0
9
)
N

-

W
o
r
st

-c
a
se

D
e
b
u
g
g
in

g
S
c
e
n
a
r
io

T
ec

h
n

iq
u

e
T

a
ra

n
tu

la
B

a
ri

n
el

O
ch

ia
i

D
S

ta
r

O
P

2
T

o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
o
p

-5
T

o
p

-1
0

T
o
p

-2
0
0

T
a
ra

n
tu

la
-

(-
0
.1
4
)
N

(-
0
.0
8
)
N

(-
0
.0
0
7
)
N

(0
.1
2
)
N

(0
.0
6
)
N

(-
0
.0
4
)
N

(-
0
.2

2
)

S
(-

0
.2

1
)

S
(-

0
.2

9
)*

S
-0

.4
3
*

M
-0

.3
8
*

M
-0

.3
4
*

M
B

a
ri

n
el

(0
.1
4
)
N

(0
.0
8
)
N

(0
.0
0
7
)
N

-
(0

.2
4
)

S
(0
.1
4
)
N

(-
0
.0
3
)
N

(-
0
.1
3
)
N

(-
0
.1

6
)

S
(-

0
.2

8
)*

S
-0

.3
5
*

M
-0

.3
3
*

M
-0

.3
4
*

M
O

ch
a
i

(-
0
.1
2
)
N

(-
0
.0
6
)
N

(0
.0
4
)
N

(-
0
.2

4
)

S
(-
0
.1
4
)
N

(0
.0
3
)
N

-
(-

0
.3

1
)*

S
(-

0
.2

7
)*

S
(-

0
.2

6
)*

S
-0

.5
0
*

L
-0

.4
3
*

M
(-

0
.3

3
)*

S
D

S
ta

r
(0

.2
2
)

S
(0

.2
1
)

S
(0

.2
9
)*

S
(0
.1
3
)
N

(0
.1

6
)

S
(0

.2
8
)*

S
0
.3

8
*

M
(0

.3
2
)*

S
(0

.2
6
)*

S
-

(-
0
.2

9
)

S
(-

0
.2

3
)

S
(-
0
.0
8
)
N

O
P

2
0
.4

3
*

M
0
.3

8
*

M
0
.3

4
*

M
0
.3

5
*

M
0
.3

3
*

M
0
.3

4
*

M
0
.5

0
*

L
0
.4

3
*

M
(0

.3
3
)*

S
(0

.2
9
)

S
(0

.2
3
)

S
(0
.0
8
)
N

-

50 Ratnadira Widyasari et al.
T

a
b

le
2
1

Im
p

ro
v
em

en
t

o
n

S
B

F
L

T
ec

h
n

iq
u

es

T
a
r
a
n
tu

la
[∞

,2
0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
B

a
r
in

e
l

0
0

0
0

0
2

2
O

c
h

ia
i

3
5

0
0

6
1

2
4
4

D
S

ta
r

8
5

4
5

1
2

1
2

5
1
2
3

O
P

8
6

4
5

1
7

1
1
1

1
1

1
4
2

B
a
r
in

e
l

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
0

0
0

0
0

0
0

O
c
h

ia
i

3
5

0
0

6
1

2
4
4

D
S

ta
r

8
5

4
5

1
2

1
2

5
1
2
3

O
P

8
6

4
5

1
7

1
1
1

1
1

1
4
2

O
c
h

ia
i

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
8

0
0

2
5

4
1
9

B
a
r
in

e
l

8
0

0
2

5
6

2
1

D
S

ta
r

5
6

1
5

1
1

1
4

5
9
2

O
P

5
7

1
5

1
6

2
1

1
1

1
1
1

D
S

ta
r

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
1
1

1
0

2
2

3
1
7

B
a
r
in

e
l

1
1

1
0

2
2

5
1
9

O
c
h

ia
i

4
1

0
1

1
0

7

O
P

1
0

0
5

7
6

1
9

O
P

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
1
1

1
0

3
2

3
2
0

B
a
r
in

e
l

1
1

1
0

3
2

5
2
2

O
c
h

ia
i

6
1

0
3

2
5

1
0

D
S

ta
r

2
0

0
1

0
0

3

Evaluating SBFL Techniques on Python Projects 51
T

a
b

le
2
2

Im
p

ro
v
em

en
t

o
n

A
v
er

a
g
e-

ca
se

D
eb

u
g
g
in

g
S

ce
n

a
ri

o

T
a
r
a
n
tu

la
[∞

,2
0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
B

a
r
in

e
l

0
0

0
0

0
2

2
O

c
h

ia
i

1
9

0
0

6
1

0
2
6

D
S

ta
r

4
7

3
1

5
6

1
6
3

O
P

4
7

3
1

9
9

2
7
1

B
a
r
in

e
l

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
0

0
0

0
0

0
0

O
c
h

ia
i

1
9

0
0

6
1

0
2
6

D
S

ta
r

4
7

3
1

5
6

1
6
3

O
P

4
7

3
1

9
9

2
7
1

O
c
h

ia
i

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
3

0
0

1
4

0
8

B
a
r
in

e
l

3
0

0
1

4
2

1
0

D
S

ta
r

3
2

0
1

2
7

2
4
4

O
P

3
2

0
1

7
1
1

3
5
4

D
S

ta
r

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
5

0
0

2
2

0
9

B
a
r
in

e
l

5
0

0
2

2
2

1
1

O
c
h

ia
i

3
0

0
0

1
0

4

O
P

0
0

0
5

4
1

1
0

O
P

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
6

0
0

2
1

0
9

B
a
r
in

e
l

6
0

0
2

1
2

1
1

O
c
h

ia
i

4
0

0
1

1
0

6
D

S
ta

r
1

0
0

1
0

0
2

52 Ratnadira Widyasari et al.
T

a
b

le
2
3

Im
p

ro
v
em

en
t

o
n

W
o
rs

t-
ca

se
D

eb
u

g
g
in

g
S

ce
n

a
ri

o

T
a
r
a
n
tu

la
[∞

,2
0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
B

a
r
in

e
l

0
0

0
0

0
2

2
O

c
h

ia
i

1
3

0
0

4
1

0
1
8

D
S

ta
r

3
6

2
1

3
5

0
4
7

O
P

3
6

2
1

5
8

1
5
3

B
a
r
in

e
l

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
0

0
0

0
0

0
0

O
c
h

ia
i

1
3

0
0

4
1

0
1
8

D
S

ta
r

3
6

2
1

3
5

0
4
7

O
P

3
6

2
1

5
8

1
5
3

O
c
h

ia
i

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
3

0
0

0
3

0
6

B
a
r
in

e
l

3
0

0
0

3
2

8
D

S
ta

r
2
6

0
1

1
6

1
3
5

O
P

2
6

0
1

3
9

2
4
1

D
S

ta
r

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
5

0
0

1
1

0
7

B
a
r
in

e
l

5
0

0
1

1
2

9
O

c
h

ia
i

3
0

0
0

1
0

4

O
P

0
0

0
2

3
1

6

O
P

[∞
,2

0
1
]→

[2
0
0
,1

1
]

[∞
,2

0
1
]→

[1
0
,6

]
[∞

,2
0
1
]→

[5
,1

]
[2

0
0
,1

1
]→

[1
0
,6

]
[2

0
0
,1

1
]→

[5
,1

]
[1

0
,6

]→
[5

,1
]

T
o
ta

l
T

a
r
a
n
tu

la
6

0
0

2
1

0
9

B
a
r
in

e
l

6
0

0
2

1
2

1
1

O
c
h

ia
i

4
0

0
1

1
0

6
D

S
ta

r
1

0
0

1
0

0
2

Evaluating SBFL Techniques on Python Projects 53

Table 24 Prior Results Comparison on Average-case Scenario

No.

Previous comparisons
on Java or C

artificial faults
Defects4J Results (2017) BugsInPy Results

Winner>Loser Agree? Effect size Agree? Effect size
1. Ochiai >Tarantula ∗ (insig.) -0.01 (N) (insig.) 0.04 (N)

2.
Barinel >Ochiai
(Abreu et al., 2009b)

(insig.) 0.01 (N) (insig.) -0.04 (N)

3.
Barinel >Tarantula
(Abreu et al., 2009b)

(insig.) -0.0002 (N) (insig.) 0.001 (N)

4.
OP >Ochiai
(Naish et al., 2011a)

(insig.) 0.03 (N) no 0.11 (N)

5. OP >Tarantula † (insig.) 0.02 (N) no 0.16 (S)

6. DStar >Ochiai ‡ (insig.) 0.002 (N) no 0.11 (N)
7. DStar >Tarantula ∗∗ (insig.) -0.001 (N) no 0.15 (S)

∗(Le et al., 2013, 2015b; Naish et al., 2011a; Wong et al., 2016; Xuan and Monperrus, 2014b)
†(Naish et al., 2011a; Moon et al., 2014) ‡(Le et al., 2015b; Wong et al., 2016)
∗∗(Le et al., 2015b; Wong et al., 2016; Ju et al., 2014)
Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

Table 25 Prior Results Comparison on Worst-case Scenario

No.

Previous comparisons
on Java or C

artificial faults
Defects4J Results (2017) BugsInPy Results

Winner>Loser Agree? Effect size Agree? Effect size
1. Ochiai >Tarantula ∗ (insig.) -0.005 (N) (insig.) 0.02 (N)

2.
Barinel >Ochiai
(Abreu et al., 2009b)

(insig.) 0.005 (N) (insig.) -0.02 (N)

3.
Barinel >Tarantula
(Abreu et al., 2009b)

(insig.) 6.4E−6 (N) (insig.) 0.0009 (N)

4.
OP >Ochiai
(Naish et al., 2011a)

(insig. 0.03 (N) (insig.) 0.04 (N)

5. OP >Tarantula † (insig.) 0.02 (N) (insig.) 0.06 (N)

6. DStar >Ochiai ‡ (insig.) -0.0008 (N) (insig.) 0.04 (N)
7. DStar >Tarantula ∗∗ (insig.) -0.005 (N) (insig.) 0.07 (N)

∗(Le et al., 2013, 2015b; Naish et al., 2011a; Wong et al., 2016; Xuan and Monperrus, 2014b)
†(Naish et al., 2011a; Moon et al., 2014) ‡(Le et al., 2015b; Wong et al., 2016)
∗∗(Le et al., 2015b; Wong et al., 2016; Ju et al., 2014)
Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).
Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

	Introduction
	Related Work
	Dataset and Methodology
	Results
	Discussion and Implications
	Conclusion and Future Work

