
Does data sampling improve deep learning-based
vulnerability detection? Yeas! and Nays!

Xu Yang, Shaowei Wang
University of Manitoba, Canada

yangx4@myumanitoba.ca, shaowei.wang@umanitoba.ca

Yi Li, Shaohua Wang
New Jersey Institute of Technology, USA
yl622@njit.edu, davidshwang@ieee.org

Abstract—Recent progress in Deep Learning (DL) has sparked
interest in using DL to detect software vulnerabilities automati-
cally and it has been demonstrated promising results at detecting
vulnerabilities. However, one prominent and practical issue for
vulnerability detection is data imbalance. Prior study observed
that the performance of state-of-the-art (SOTA) DL-based vulner-
ability detection (DLVD) approaches drops precipitously in real
world imbalanced data and a 73% drop of F1-score on average
across studied approaches. Such a significant performance drop
can disable the practical usage of any DLVD approaches. Data
sampling is effective in alleviating data imbalance for machine
learning models and has been demonstrated in various software
engineering tasks. Therefore, in this study, we conducted a
systematical and extensive study to assess the impact of data
sampling for data imbalance problem in DLVD from two aspects:
i) the effectiveness of DLVD, and ii) the ability of DLVD to
reason correctly (making a decision based on real vulnerable
statements). We found that in general, oversampling outperforms
undersampling, and sampling on raw data outperforms sampling
on latent space, typically random oversampling on raw data
performs the best among all studied ones (including advanced one
SMOTE and OSS). Surprisingly, OSS does not help alleviate the
data imbalance issue in DLVD. If the recall is pursued, random
undersampling is the best choice. Random oversampling on raw
data also improves the ability of DLVD approaches for learning
real vulnerable patterns. However, for a significant portion of
cases (at least 33% in our datasets), DVLD approach cannot
reason their prediction based on real vulnerable statements. We
provide actionable suggestions and a roadmap to practitioners
and researchers.

Index Terms—Vulnerability detection, deep learning, data
sampling, interpretable AI

I. INTRODUCTION

Machine learning-based VD approaches have attracted more
attention from research community since they can learn vulner-
ability patterns from prior vulnerable code automatically [1]–
[5]. Especially, recent progress in Deep Learning (DL) has
sparked interest in using DL to detect software vulnerabili-
ties automatically. In fact, recent studies have demonstrated
very promising results achieving high accuracy in detecting
vulnerabilities [3]–[5].

The prominent and practical issue for vulnerability detection
is data imbalance. The ratio of vulnerable and non-vulnerable
cases in real-world projects is extremely unbalanced. Vul-
nerable cases are far fewer than non-vulnerable ones. Prior
study [3] observed that the performance of state-of-the-art
(SOTA) DL-based vulnerability detection (DLVD) approaches

drops precipitously in real world unbalanced data. On aver-
age, a 73% drop of F1 across all the models is observed.
Such a significant performance drop can disable the practical
usage of any DLVD approaches. Various approaches were
developed to deal with the problem, such as data sampling,
cost sensitive learning, and ensemble methods. Data sampling
is a widely-used technique and proved to help solve the
data imbalance issues in Software Engineering tasks, such as
defect prediction [6], [7], software quality prediction [8], and
software change prediction [9]. Despite the prevalent existence
of imbalance issue in DLVD, no research that systemically and
extensively studies data sampling for data imbalance problem
in DLVD has been done. Thus, it is in dire need to understand
data sampling for data imbalance problem in DLVD.

In this paper, we aim to assess the impact of data sampling
on the effectiveness of existing SOTA DLVD approaches
and their ability of learning vulnerable patterns. For this
goal, we conducted an extensive study on four data sampling
approaches (random under/oversampling, SMOTE [10], and
OSS [11]), and their impact on four SOTA DLVD approaches:
Devign [12], Reveal [3], IVDetect [5], and LineVul [13],
using three benchmark datasets. Note that some advanced
data sampling approaches could only be applied to the data
points that have been projected into latent space (feature space)
since they require computation in the latent space, such as the
popular one SMOTE [10]. While simple ones, such as random
under/oversampling, can be applied both on raw data (without
any projection) and on latent space. On one hand, latent
space sampling is cheaper than sampling on raw data, since
it saves the resource and time for preprocessing data (e.g.,
data cleanup and feature extraction) and training models. On
the other hand, projection into latent space causes information
loss. It is unknown which strategy is better. Therefore, we
also investigate those two sampling strategies - sampling on
raw data (i.e., raw code without any pre-processing and feature
extraction) and sampling on latent space (i.e., representation
vectors of code). We formulate our research as the following
research questions:

• RQ1: Does data sampling improve the effectiveness of
existing DLVD approaches?
We applied various data sampling approaches to the state-
of-the-art DLVD approaches and compared them with the
ones without sampling. Results: Generally, oversampling



outperforms undersampling, and sampling on raw data out-
performs sampling on latent space. Simple approach random
oversampling on raw data beats all other studied ones in-
cluding advanced one SMOTE and OSS. Surprisingly, OSS
does not help alleviate the data imbalance problem in DLVD
if the DLVD approaches perform poorly on imbalanced
data originally. Random undersampling performs the best in
improving recall on imbalanced datasets.

• RQ2: Does data sampling improve the ability of DLVD
for learning the vulnerable patterns?
We aim to understand if a trained DL model with sampling
approaches can make more prediction decision reasoning
over real vulnerable statements in functions than the same DL
model without sampling approaches. We used interpretable
AI techniques (LIME [14] and GNNExplainer [15]) to inter-
pret the predictions made by DLVD approaches and examine
whether their decisions are made based on the real vulner-
able patterns (i.e., vulnerable statements). Results: Random
oversampling improves the ability of DLVD approaches for
learning real vulnerable patterns. However, in a significant
portion of cases (at least 33% in our studied datasets),
DVLD approaches cannot reason their prediction based on
real vulnerable statements. There is still room for improving
the ability of learning real vulnerable patterns for DLVD
approaches.
In summary, the contributions of our paper include:

• To our best knowledge, we conducted the first systematic
and extensive study to assess the impact of data sampling
for data imbalance problem in DLVD. We study four data
sampling approaches and two data sampling strategies and
their impact on four SOTA DLVD approaches using three
benchmark datasets. We ran 1,680 experiments, costing more
than 10,200 GPU hours.

• We provide actionable suggestions and a roadmap to prac-
titioners and researchers for DLVD. Yeas1: oversampling is
recommended over undersampling. Yeas2: sampling on raw
data is recommended over sampling on latent space. Yeas3:
random oversampling on raw data is recommended to handle
data imbalance problem in DLVD compared. Yeas4: future
research is suggested to develop new data augmentation to
improve the ability of DLVD approaches for learning real
vulnerable patterns, as there is still room to improve. Nays1:
OSS is not recommended to handle data imbalance problem
in DLVD.

• A replication package https://github.com/WIP2022/
DataSampling4DLVD for future research and improvement.

II. BACKGROUND

In this section, we introduce the background related to deep
learning-based vulnerability detection and data sampling.

A. Overview of deep learning-based vulnerability detection

In general, DLVD approaches consist of three phases:
feature extraction, model training, and model deployment.
Figure 1 presents the general framework of DLVD approaches
in a green rectangle. First, in the feature extraction phase,

various features from code units that could well capture
the semantic and syntactic properties of code to discrimi-
nate vulnerable code from non-vulnerable code are extracted.
Second, the extracted features are transformed into a real-
valued vector, which is a compact representation of code units
(i.e., representation learning). What features are extracted and
how a representation is learned depend on the techniques
being selected. Once the representation learning is done, a
binary classification model is selected to perform vulnerability
detection. We discuss more details on specific representation
learning in Section II-B. In the deployment phase, the same
features extracted in the training phase are extracted and the
same representation learning techniques are applied to the code
unites of target software systems to generate the representation
vector.

B. Existing DL-based vulnerability detection approaches

Generally, DLVD approaches differ in two aspects: the types
of features extracted from a code unit (i.e., feature extraction)
and the way of transforming the extracted features into a
representation vector (i.e., representation learning). Based on
this, DLVD approaches could be categorized into two families:
token-based or graph-based approaches.
Token-based: In the token-based approach, code is considered
as a sequence of tokens and is represented as a vector via text
embedding techniques (e.g., Word2Vec [16],GloVe [17]). For
instance, LineVul [13] leverages CodeBERT [18] to embed
whole sequence of tokens in a function for vulnerability
detection. CodeBERT is a transformer-based model pre-trained
on a large corpus of source code in various languages and can
use the attention mechanism to learn the relationship between
tokens. Instead of considering the whole code, approaches
such as VulDeePecker [2] and SySeVR [19], extract slices
from points of interest in code (e.g., API calls, array indexing,
pointer usage, etc.) and use them for vulnerability detection
since they assume that different lines of code are not equiva-
lently important for vulnerability detection.
Graph-based: Besides considering the semantic information
represented in the sequential tokens, graph-based approaches
also consider code as graphs and incorporate the information
in different syntactic and semantic dependencies using graph
neural network (GNN) [20] when generating the represen-
tation vectors. Different types of syntactic/semantic graphs,
(e.g., abstract syntax tree (AST), program dependency graph
(PDG), code property graph (CPG)) can be used. For example,
Devign [12] and Reveal [3] leverage code property graph
(CPG) [21] to build their graph-based vulnerability detection
model. They both use the gated graph neural network (GGNN)
to represent the code. IVDetect [5] and LineVD [4] consider
the vulnerable statements and capture their surrounding con-
texts via program dependency graph. IVDetect uses Feature-
Attention GCN model(FA-GCN) for graph embedding and
LineVD use graph attention network (GAT) model for graph
embedding. Differently, IVDetect performs function-level de-
tection while LineVD performs line-level.

2

https://github.com/WIP2022/DataSampling4DLVD
https://github.com/WIP2022/DataSampling4DLVD


Training

Trained model
Representation learning

Model training

Testing

Feature
extraction

Training

Testing

Representation vector

Sampling_L
(RUS_L, ROS_L, OSS_L, SMOTE_L)

Classfication model
training

Repeat 20 times

Studied
dataset Split

Evaluation metrics
calculation

DLVD

Sampling_R

(RUS_R, ROS_R)

Model interpretation

Fig. 1: Overview of our approach. The deep learning-based vulnerability detection framework is presented in the green rectangle.
We mark steps where the proper data sampling approaches could be performed in red round-rectangles.

TABLE I: Prior approaches using deep learning for vulnera-
bility detection.

Approach Extracted
feature

Representation
learning

Classifier Detection
level

LineVul [13] tokens CodeBERT MLP Function/line
VulDeePecker [2] tokens +

code slices
word2vec BLSTM Function

SySeVR [22] tokens +
code slices

word2vec BGRU Function

Devign [12] tokens +
CPG

word2vec +
GGNN

MLP Function

Reveal [3] tokens +
CPG

word2vec +
GGNN

MLP Function

IVDetect [5] tokens +
AST+PDG

GloVe +
FA-GCN

MLP Function

LineVD [4] tokens +
PDG

CodeBERT +
GAT

MLP Line

In both graph-based and text-based models, once the repre-
sentation for code units is learned, the vector will be passed
into a classfier for final learning. Various classifiers have been
investigated in prior studies. For instance, IVDetect [5] and
Reveal [3] use Multilayer perceptron (MLP) as the classifica-
tion model. Table I summarizes the framework of the above-
mentioned DLVD approaches.

C. Data sampling

In general, data sampling approaches could be categorized
into two families: oversampling and undersampling.
Undersampling vs. oversampling Undersampling refers to
deleting data points from the majority class of the dataset so
that the remaining majority class is approximately equal in
number to the minority class [23]. In the context of vulner-
ability detection, undersampling deletes a certain number of
non-vulnerable cases from the training data so that the ratio
of vulnerable/non-vulnerable cases approximately equals 1.
For instance, random undersampling (RUS) randomly removes
cases from the majority class, with or without replacement.
Tomek Links locates all cross-class nearest neighbor pairs and
remove the corresponding cases in the majority class that are
closest to the minority class [24]. One-sided selection (OSS)
combines Tomek Links and the Condensed Nearest Neighbor
(CNN) Rule [11]. However, undersampling is very likely to

discard useful or important samples [23] and cause information
loss.

Oversampling increases the number of instances in the
minority class to balance the dataset [23]. For instance, random
oversampling (ROS) randomly selects cases from the minority
class, with replacement, and adding them to the training
dataset. ROS has been proven to be robust [25]. One limitation
of ROS is that it does not provide any additional information
to the model. Another popular oversampling technique called
Synthetic Minority Oversampling Technique (SMOTE) [23]
was developed to address this issue by augmenting data for
the minority class. It first selects a minority class instance a
at random and finds its nearest majority class neighbor b. The
synthetic instance is then created by choosing one point on
the line connecting a and b in the feature space.
Raw data sampling vs. latent space sampling Some ad-
vanced data sampling approaches could only be applied to
the data points that have been projected into latent space (or
feature space) since they require computation (e.g., calculating
distance between points) in the latent space, such as SMOTE.
While some simple ones, such as RUS and ROS, can be
done on the raw data (raw code units in our case) without
any projection into latent space. For simplicity, we refer to
the sampling performed on the raw data without any further
process as sampling_R and the sampling performed on data
in the latent space as sampling_L. Based on the definition,
random oversampling and random undersampling could be
performed both on raw data and latent space, while SMOTE
and OSS could only be on latent space. In the context of
DLVD, we can perform sampling_R on the raw training
data and perform sampling_L on representation vectors after
representation learning as indicated in Figure 1. On one hand,
sampling_L is cheaper than sampling_R, since sampling_L
saves the resource and time to preprocess (e.g., data cleanup,
feature extraction) and train the backbone model on the extra
instances that are added in the minority class. On other
hand, projection into latent space cause information loss. We
compare them in our RQs. For simplicity, we refer to the same
sampling approach applied to raw data and latent space as two
approaches in the rest of the paper. For instance, we refer to
random oversampling on latent space as ROS_L and on raw

3



data as ROS_R.

III. EXPERIMENTAL DESIGN

In this section, we present our research questions (RQs), our
studied dataset, DLVD approaches, data sampling approaches,
and our analysis approach for RQs.

A. Research questions

We aim to answer the following research questions:
• RQ1: Does data sampling improve the effectiveness of

existing DLVD approaches?
• RQ2: Does data sampling improve the ability of DLVD

for learning the vulnerable patterns?
Data sampling has been shown its effectiveness in allevi-

ating data imbalance issues in various software engineering
tasks, such as defect prediction [6], [7] and quality predic-
tion [8]. Little research was on the impact of data sampling
on the performance of SOTA DLVD approaches. In RQ1,
we investigated whether data sampling could improve the
effectiveness of existing SOTA DLVD approaches. Through
RQ1, we could provide practitioners insights on the selection
of proper data sampling approaches based on their context.
Prior research has shown that even if a DL model is able to
correctly predict an instance, the prediction is not always based
on the real pattern [3], [14]. For instance, in the vulnerability
detection context, suppose a DLVD approach correctly predicts
a function as vulnerable. However, the statements that the
model reasons to make the decision are not the real vulnerable
statements in the function. In other words, the model does not
really learn the vulnerable patterns for discriminating from
vulnerable code to non-vulnerable code. Therefore, in RQ2,
we aim to understand whether data sampling could help a
DLVD approach improve its ability to learn real vulnerable
patterns.

B. Datasets

To answer our research questions, we conducted our study
on three popular vulnerability datasets including BigVul [26],
Reveal [3], and Devign [12]. BigVul [26] covers the CWEs
from 2002 to 2019 that are extracted from over 300 different
open source C/C++ projects and contains the trustworthy
source code vulnerabilities spanning 91 different vulnerability
types. It contains +10K vulnerable methods and +160K non-
vulnerable methods. The Reveal dataset [3] contains +12K
methods with 9.16% of the vulnerable ones. The Devign
dataset [12] has +22K methods collected from projects FFM-
Peg and Qemu, in which 45.0% of the methods are vulnerable.
The Devign dataset is balanced compared with another two
datasets. Those datasets are widely used to evaluate various
DLVD approaches in prior studies [3]–[5], [12], [13]. Note that
only the BigVul dataset has vulnerability-fixing information.

C. Studied DLVD & Data sampling approaches

DLVD. We chose DLVD approaches based on two criteria.
First, DLVD should be representative of the two families of
DLVD approaches, token-based and graph-based approaches

TABLE II: Overview of the studied datasets.

Dataset #Vulnerablities #Non-Vulnerabilities Ratio
Reveal [3] 1,664 10,547 1:9.9
Devign [12] 10,067 12,294 1:1.2
BigVul [26] 10,547 168,752 1:16.3

as discussed in Section II-B. Second, the approaches should be
recently developed and leverage deep learning techniques. The
goal behind the criterion is to foster the generalizability and
applicability of our results to SOTA approaches. We selected
Devign [12], Reveal [3], and IVDetect [5] as the representative
for graph-based approaches. For the token-based approach, we
selected LineVul [13] as the representative since it is SOTA
approach leveraging CodeBERT [18], and has been proven to
be more effective than other approaches (e.g., Devign, Reveal,
and IVDetect). Note that LineVul can be used to perform both
function-level and line-level vulnerability detection. In this
study, we used LineVul to perform function-level detection
for consistency.
Data sampling. We selected data sampling approaches based
on two criteria. First, the selected approach should cover
two families of sampling approaches in Section II-C, i.e.,
oversampling and undersampling. Second, the selected ap-
proaches can be applied on both raw data and latent space.
Therefore, we selected random undersampling (RUS) and
random oversampling (ROS) as our studied approaches. In
addition, we also wish to include advanced approaches besides
ROS and RUS. We selected one-side selection (OSS) as
the representative for undersampling, and Synthetic Minority
Oversampling Technique (SMOTE) as the representative for
oversampling. Note that OSS and SMOTE could only be
applied on latent space as discussed in Section II-C.

D. Evaluation metrics

We consider two families of evaluation metrics to assess
the effectiveness of DLVD approaches. First, considering the
vulnerability detection as a binary classification task, we
consider four popular evaluation metrics [27]- recall (short
for R), precision (short for P), F1, and Area Under The Curve
(AUC) following prior studies [2], [3], [12], [28], [29]. Second,
considering the cost of reviewing potential vulnerable code
from a returned list, we used popular evaluation metric for
ranking algorithm [5], [30] - Precision@k (short for P@k),
which is calculated as true positive

k and k is the size of returned
list. We selected k to be 10, 20, 50, and 100.

E. Approach of RQs

We first introduce certain settings in our study. We consider
the assessment of data sampling approaches of one DLVD
approach on one dataset as one experimental instance. For
simplicity, we use the format {DLVD}+{Dataset} to denote
one specific instance in the rest of the sections. Therefore, We
have 12 experimental instances, i.e., 4 DLVD * 3 datasets.

For each experimental instance, we have the following three
settings of data sampling to apply and compare their impact
on the DLVD approach:

4



NoSampling: We train the DLVD approach on the original
training data without applying any data sampling approach
and evaluate the DLVD approach on the testing data.
Sampling_R: We apply data sampling approaches (i.e., RUS
and ROS) on the raw training data (shown in Figure 1 in red
round-rectangle) and train the DLVD approach on the sampled
training data. We then evaluate the DLVD approach on testing
data. We refer to RUS and ROS on raw data as RUS_R and
ROS_R, respectively.
Sampling_L: This setting is similar to Sampling_R. The only
difference is that instead of applying data sampling approaches
on raw training data, we apply data sampling (i.e., RUS, ROS,
OSS, and SMOTE) on representation vectors of training data
(latent space). We refer to RUS, ROS, OSS, and SMOTE
on latent space as RUS_L, ROS_L, OSS_L, and SMOTE_L,
respectively.

Data splitting for generating training and testing data in-
volves a random process, to alleviate the bias caused by the
randomness, we repeated the process 20 times following prior
studies [31]–[33] and calculated the mean value across the 20
splits for each evaluation metric as our results. We split the
training and testing to 80%/20% following prior studies [3],
[34], [35].

1) Approach of RQ1: In RQ1, our goal is to examine
if data sampling could improve the effectiveness of DLVD
and if so, which data sampling approaches perform the best.
For this purpose, we rank data sampling approaches in each
experimental instance based on our studied evaluation metrics
(see Section III-D for details). For example, suppose we apply
the studied sampling approaches on the Reveal dataset for
training the IVDetect model (i.e., IV Detect+Reveal). In this
experimental instance, ROS_R performs the best (ranks 1st)
in terms of F1, we note that ROS_R ranks 1st in the instance
IV Detect + Reveal in terms of F1. To get an overall rank
for a data sampling approach across the studied experimental
instances, we compute an average rank. For instance, suppose
ROS_R ranks 1st in 6 instances and ranks 2nd in another
6 instances, then its average rank is 1.5. Therefore, we can
compare data sampling approaches based on their rank in
terms of different evaluation metrics. A smaller rank indicates
more effective. We also investigated which sampling approach
performs the best by comparing the number of experimental
instances won by each sampling approach.

2) Approach of RQ2: To understand if the trained model
makes correct prediction decision reasoning over real vulner-
able statements in a function, we selected to use interpretable
AI techniques. The three graph-based models we studied all
use GNNs to capture graph-related properties. Hence, we
selected the Reveal model as the representative for graph-based
approaches and selected LineVul as the representative for text-
based approaches. We selected the BigVul dataset since only
this dataset provides us the line information for vulnerable
codes, i..e, specific statements that make the code vulnerable.
Therefore, we conducted the analysis on two experimental
instances LineV ul +BigV ul and Reveal +BigV ul.

We used Local Interpretable Model-Agnostic Explanations

TABLE III: Parameter setting for studied DLVDs.

Parameter IVDetect Devign Reveal LineVul
Epochs 50 50 50 4
Learning_rate 1e-4 1e-4 1e-4 5e-5
GNN_Layer 4 6 6 NaN
graph embedding size 100 200 200 NaN
feature embedding size 100 100 100 768
total parameters 575K 924K 402K 123M

(LIME) [14], which is a widely-used model-agnostic ex-
plainable algorithm for explaining deep learning models, to
interpret LineVul. LIME returns tokens in a sequence that
make important contribution to the prediction. For our case,
we compared the results of LIME with the real vulnerable
statements in the functions. More specifically, we designed
the following experiment for LineVul: we selected the true
positive (TP) cases (the vulnerable functions that are predicted
correctly) predicted by LineVul in the testing set of BigVul,
and analyzed those cases using LIME. In the result of LIME,
for each true positive case, we selected the top k most
important tokens that drive the model to make the decision and
see whether those tokens are inside the vulnerable statements.
If at least one of the top k is inside the vulnerable statements,
we consider it as a hit, and we compare the ratio of hit over all
TP cases between NoSampling and all sampling approaches.
We considered 1, 3, 5, and 10 for k.

We used GNNExplainer [15] to interpret Reveal following
prior study [5]. Similarly, we interpreted the true positive (TP)
cases predicted by the Reveal model. GNNExplainer provides
the importance of each edge in the graph. Reveal uses the code
property graph (CPG), and each line of code is a node in the
graph, we applied GNNExplainer on the CPG. GNNExplainer
does not directly tell us which nodes are important, therefore
we consider the nodes connected by the important edges
returned by GNNExplainer as the important nodes in the
graph. Similar to the experiment of Lime, we selected the
top k most important edges and their connected nodes that
drive the model to predict a function to be vulnerable and see
whether those nodes (lines of codes) are inside the vulnerable
statements of the function.

F. Implementation details

We ran our experiments on Compute Canada Narval HPC
[36] with Nvidia A100 GPUs and a Linux server with four
Nvidia RTX 3090 GPUs, AMD Ryzen 48-Core CPU with
256 GB Ram. We used the implementations of studied DLVD
approaches published in their GitHub repositories. For LIME
and GNNExplainer, we used the implementation in Github-
Lime and dgl-GNNExplainer [37].

We fine-tuned the DLVD approaches using the recom-
mended parameters in the original papers. The parameter
settings are presented in Table III. Noted that we used a
learning rate of 5e-5 in the LineVul model because it is
a pre-trained model and our training on the model can be
considered as fine-tuning the Codebert for a downstream task –
DLVD. Thus the learning rate is lower than other models. Our
experiments involve 12 experimental instances, and for each

5

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://docs.dgl.ai/en/latest/generated/dgl.nn.pytorch.explain.GNNExplainer.html


experimental instance we have 7 data sampling approaches
(NoSampling plus various sampling approaches) to examine.
Therefore, we have 84 (7*12) combinations. For each data
sampling approach, we ran 20 times for getting reliable results.
We totally ran 12x7x20 = 1,680 experiments, which costs more
than 10,200 GPU hours.

IV. RESULTS

A. RQ1: Does data sampling improve the effectiveness of
existing DLVD approaches?

TABLE IV: Average rank of each data sampling approach
in terms of different evaluation metrics. For each metric, we
highlight the records that have a smaller rank than NoSampling
with green, and darker color indicates better.

Sampling AUC P R F1 P@10 P@20 P@50 P@100
NoSampling 3.9 3.3 6.8 6.6 4.0 3.8 4.2 4.3
RUS_R 3.0 4.6 2.3 3.3 4.5 4.7 4.4 4.2
ROS_R 3.4 2.9 4.3 2.8 2.4 2.5 2.5 2.5
SMOTE_L 5.3 5.0 3.3 3.3 4.3 3.8 3.8 3.9
OSS_L 4.3 3.3 4.8 4.5 4.8 4.7 4.2 4.8
RUS_L 3.8 5.1 2.5 3.8 4.2 4.8 4.8 4.5
ROS_L 4.3 3.9 4.0 3.8 3.8 3.8 4.0 3.9

Table V presents the detailed results of various data sam-
pling approaches in the 12 experimental instances in terms of
various evaluation metrics. We observe that almost all data
sampling techniques improve the effectiveness of all experi-
mental instances in terms of F1, which is a major evaluation
metric for the binary classification task. We observe the same
results in Table IV which presents the average rank of each
studied data sampling approach including the NoSampling
across the 12 experimental instances, all studied data sampling
approaches have a smaller rank than NoSampling in terms
of F1. Similar results are observed when looking at P@k
on imbalanced datasets (Reveal and BigVul). For instance,
in terms of P@10, at least one data sampling approach
outperforms NoSampling in all experimental instances except
the instances related to the Reveal model.�
�

�
�

Finding1: In general, data sampling improves the effec-
tiveness of all studied models, especially on imbalanced
datasets.

In Table IV, only ROS_R outperforms NoSampling in terms
of all evaluation metrics. In Table V, we observe that ROS_R
wins (ranks 1st) 7 out of the 12 instances in terms of F1.
If only considering the imbalanced datasets, ROS_R wins 7
out of 8 instances in terms of F1, except Devign + Reveal.
ROS_R improves the NoSampling in terms of F1 across all
experimental instances. Although ROS_R is not the best in
Devign + Reveal, it still improves NoSampling by 31.9%
from 0.188 to 0.248. When considering the improvement of
ROS_R over NoSampling in the 8 experimental instances
on imbalanced datasets, ROS improves the NoSampling at
least by 31.9%. In terms of P@10, ROS_R outperforms
NoSampling in 5 out of the 8 instances on imbalanced datasets.
Surprisingly, ROS_R performs much better than SMOTE_L
in all evaluation metrics, which is an advanced sampling

approach and is reported at least comparable to random
oversampling reported in prior studies [38]–[40].�




�

	

Finding2: Surprisingly, the simple approach ROS_R out-
performs all other studied sampling approaches (including
the advanced one SMOTE_L) and it significantly improves
the effectiveness of DLVD approaches in terms of all
studied metrics.

When comparing oversampling with undersampling, we
observe that ROS_R outperforms RUS_R in all metrics except
AUC and R in Table IV. Similarly, ROS_L outperforms
RUS_L in all P@k and R. Such a finding is expected since
undersampling deleting data points from the dataset, which
causes information loss while oversampling keeps all the orig-
inal data. Interestingly, when looking at the improvement in
recall, we observe that RUS_R achieves the best performance
in all experimental instances on imbalanced datasets (Reveal
and BigVul), except for LineV ul+Reveal, in which RUS_L
performs the best. Although in some instances, RUS_R is not
the best, RUS_R still improves the recall across all the exper-
imental instances at least with an improvement of 10% over
NoSampling. Our finding is compatible with prior studies [41]
that undersampling achieves the largest improvement of recall.
We investigate the reason behind this in Section V-B.�
�

�
�

Finding3: In general, oversampling outperforms under-
sampling, while random undersampling performs the best
in improving recall on imbalanced datasets.

When comparing sampling_L with sampling_R, we observe
that ROS_R outperforms ROS_L in terms of all metrics in
Table IV. For RUS, RUS_R has a similar rank as RUS_L
in terms of all P@k, however, RUS_R outperforms RUS_L in
terms of AUC, P, R, and F1. Therefore, in general, sampling_R
outperforms sampling_L, typically for ROS. We speculate the
possible reasons in two folds. First, projecting the code into
latent space leads to information loss and brings bias compared
with the original code. Sampling on the latent space magnifies
such bias. Second, since the sampling is applied after the
representation learning, in other words, data sampling does
not provide help in the representation learning process.�
�

�
�Finding4: In general, sampling_R outperforms sampling_-

L.

Table 1 shows that for model Reveal and Devign which
perform relatively well on the original datasets (e.g., Devign,
Reveal, and BigVul), OSS helps improve their performance
(e.g., in terms of F1). While OSS does not help DLVD
approaches in handling data imbalance for the model IVDetect
and LineVu which perform poorly on imbalanced datasets
(i.e., Reveal and BigVul) in the NoSampling scenario. For
instance, the IVDetect and LineVul perform poorly on im-
balanced datasets (Reveal and BigVul), i.e., values of all
metrics nearly equal to 0. The reason is that those two models
do not have tolerance for the imbalance in training data
and they predict all data points as non-vulnerable. Applying

6



TABLE V: The results of each data sampling approach in terms of different evaluation metrics, including NoSampling. To
indicate which sampling approach is more effective than NoSampling in each metric, the records that have a larger value than
the NoSampling are highlighted in green, and darker color indicates better. The best records for each experimental instance in
terms of F1 are boldened.

DLVD IVDetect Devign
Sampling AUC P R F1 P@10 P@20 P@50 P@100 AUC P R F1 P@10 P@20 P@50 P@100

D
ev

ig
n

NoSampling 0.573 0.534 0.494 0.512 0.7 0.65 0.64 0.67 0.569 0.504 0.479 0.49 0.788 0.763 0.678 0.648
RUS_R 0.596 0.524 0.523 0.547 0.6 0.6 0.62 0.65 0.564 0.501 0.532 0.514 0.62 0.59 0.648 0.608
ROS_R 0.598 0.528 0.544 0.535 0.7 0.75 0.66 0.68 0.567 0.505 0.488 0.495 0.7 0.7 0.678 0.64
SMOTE_L 0.555 0.483 0.858 0.61 0.667 0.631 0.626 0.618 0.583 0.511 0.557 0.527 0.74 0.73 0.68 0.686
OSS_L 0.608 0.535 0.549 0.542 0.629 0.621 0.614 0.611 0.584 0.51 0.569 0.535 0.64 0.67 0.684 0.67
RUS_L 0.608 0.537 0.538 0.537 0.676 0.645 0.615 0.62 0.584 0.512 0.534 0.517 0.74 0.66 0.652 0.656
ROS_L 0.607 0.537 0.533 0.535 0.695 0.645 0.626 0.619 0.584 0.509 0.566 0.531 0.68 0.7 0.668 0.68

R
ev

ea
l

NoSampling 0.402 0.008 1E-04 3E-04 0 0 0 0 0.711 0.274 0.188 0.188 0.838 0.775 0.625 0.541
RUS_R 0.718 0.196 0.688 0.305 0.4 0.3 0.3 0.31 0.701 0.178 0.656 0.278 0.4 0.3 0.325 0.33
ROS_R 0.71 0.286 0.492 0.46 0.6 0.45 0.44 0.43 0.697 0.213 0.3 0.248 0.867 0.839 0.813 0.786
SMOTE_L 0.624 0.142 0.593 0.228 0.265 0.303 0.242 0.22 0.695 0.248 0.397 0.304 0.914 0.886 0.814 0.75
OSS_L 0.38 0 0 0 0 0 0 0 0.706 0.273 0.287 0.279 0.943 0.907 0.84 0.741
RUS_L 0.619 0.134 0.661 0.22 0.26 0.305 0.245 0.213 0.708 0.25 0.459 0.322 0.886 0.836 0.789 0.734
ROS_L 0.622 0.139 0.626 0.226 0.275 0.303 0.237 0.22 0.697 0.25 0.414 0.31 0.943 0.921 0.834 0.733

B
ig

Vu
l

NoSampling 0.461 0 0 0 0 0 0 0 0.701 0.326 0.201 0.247 0.68 0.72 0.668 0.586
RUS_R 0.679 0.111 0.628 0.188 0.2 0.2 0.14 0.12 0.687 0.1 0.682 0.174 0.2 0.18 0.156 0.146
ROS_R 0.77 0.244 0.622 0.347 0.2 0.1 0.14 0.15 0.703 0.295 0.253 0.271 0.48 0.42 0.472 0.488
SMOTE_L 0.568 0.08 0.507 0.137 0.06 0.088 0.08 0.097 0.717 0.259 0.284 0.269 0.614 0.65 0.631 0.557
OSS_L 0.447 0.1 5E-05 1E-04 0.005 0.003 0.001 5E-04 0.712 0.316 0.221 0.253 0.714 0.686 0.611 0.577
RUS_L 0.561 0.075 0.584 0.131 0.065 0.088 0.086 0.094 0.711 0.221 0.354 0.268 0.714 0.714 0.646 0.571
ROS_L 0.566 0.078 0.541 0.136 0.07 0.088 0.084 0.097 0.723 0.232 0.333 0.27 0.7 0.714 0.654 0.6
DLDV Reveal LineVul
Sampling AUC P R F1 P@10 P@20 P@50 P@100 AUC P R F1 P@10 P@20 P@50 P@100

D
ev

ig
n

NoSampling 0.555 0.512 0.42 0.46 0.525 0.5 0.438 0.444 0.71 0.616 0.537 0.573 0.942 0.942 0.934 0.918
RUS_R 0.553 0.499 0.545 0.519 0.47 0.47 0.446 0.46 0.704 0.595 0.59 0.592 0.989 0.981 0.973 0.967
ROS_R 0.553 0.508 0.492 0.497 0.49 0.445 0.416 0.418 0.705 0.606 0.557 0.58 0.968 0.971 0.973 0.965
SMOTE_L 0.54 0.495 0.511 0.502 0.42 0.458 0.474 0.467 0.661 0.563 0.618 0.586 0.95 0.95 0.937 0.919
OSS_L 0.54 0.494 0.547 0.519 0.44 0.45 0.468 0.458 0.663 0.564 0.587 0.573 0.95 0.945 0.937 0.912
RUS_L 0.541 0.493 0.525 0.508 0.405 0.435 0.436 0.44 0.661 0.56 0.616 0.585 0.965 0.943 0.932 0.916
ROS_L 0.541 0.496 0.506 0.5 0.415 0.445 0.442 0.453 0.66 0.568 0.554 0.558 0.965 0.953 0.929 0.912

R
ev

ea
l

NoSampling 0.583 0.282 0.119 0.159 0.625 0.556 0.56 0.484 0.775 0.4 0.249 0.299 0.73 0.72 0.683 0.625
RUS_R 0.674 0.178 0.594 0.273 0.425 0.45 0.415 0.395 0.841 0.74 0.284 0.41 0.512 0.538 0.508 0.491
ROS_R 0.636 0.23 0.414 0.292 0.61 0.61 0.588 0.576 0.811 0.443 0.506 0.472 0.965 0.963 0.948 0.907
SMOTE_L 0.621 0.192 0.311 0.235 0.415 0.343 0.237 0.215 0.716 0.301 0.51 0.355 0.735 0.74 0.687 0.625
OSS_L 0.636 0.245 0.211 0.219 0.34 0.318 0.255 0.244 0.72 0.421 0.248 0.295 0.72 0.742 0.687 0.626
RUS_L 0.676 0.187 0.557 0.277 0.31 0.325 0.34 0.3 0.724 0.263 0.599 0.354 0.755 0.715 0.679 0.646
ROS_L 0.63 0.197 0.311 0.24 0.29 0.265 0.239 0.203 0.724 0.374 0.352 0.357 0.745 0.728 0.701 0.647

B
ig

Vu
l

NoSampling 0.679 0.387 0.109 0.168 0.72 0.7 0.648 0.578 0.554 0.07 0.002 0.005 0.07 0.07 0.063 0.046
RUS_R 0.684 0.107 0.617 0.182 0.28 0.23 0.248 0.242 0.825 0.164 0.722 0.266 0.59 0.618 0.627 0.592
ROS_R 0.661 0.232 0.304 0.261 0.457 0.5 0.477 0.444 0.745 0.455 0.367 0.406 0.947 0.958 0.943 0.904
SMOTE_L 0.617 0.19 0.276 0.224 0.34 0.375 0.394 0.398 0.532 0.062 0.587 0.112 0.175 0.145 0.133 0.127
OSS_L 0.632 0.248 0.224 0.235 0.41 0.43 0.437 0.44 0.544 0.064 0.003 0.005 0.075 0.068 0.056 0.043
RUS_L 0.664 0.114 0.564 0.189 0.29 0.29 0.273 0.279 0.542 0.07 0.559 0.11 0.175 0.15 0.14 0.142
ROS_L 0.62 0.193 0.285 0.23 0.335 0.323 0.338 0.353 0.539 0.075 0.501 0.121 0.18 0.163 0.142 0.147

OSS_L does not help improve the effectiveness of IVDetect
and LineVul. Why can OSS not balance data well? OSS
relies on Tomek Links [24] and Condensed Nearest Neighbor
(CNN) [42] to decide which non-vulnerable data to delete.
However, such deleted non-vulnerable data points have to meet
certain criteria. OSS will stop deleting non-vulnerable data if
no more data points are found to meet the criteria even the
data still remains imbalanced after running OSS. Therefore,
OSS does not guarantee to reduce the size of the majority
class to the minority class. We investigate the datasets Reveal
and BigVul after applying OSS_L and find that the datasets
are still extremely imbalanced. The ratio of vulnerable and
non-vulnerable is 1:8.7 for the Reveal dataset, and 1:16 for
the BigVul dataset.�




�

	
Finding5: Surprisingly, OSS does not help alleviate the
data imbalance problem in DLVD if the DLVD approaches
(i.e., Reveal and BigVul) perform poorly on imbalanced
data originally.

B. RQ2: Does data sampling improve the ability of DLVD for
learning the vulnerable patterns?

TABLE VI: The hit ratio of various data sampling ap-
proaches in the experimental instances LineV ul + BigV ul
and Reveal +BigV ul.

LineV ul + BigV ul Reveal + BigV ul
Top1 Top3 Top5 Top10 Top1 Top3 Top5 Top10

NoSampling 0.39 0.55 0.66 0.66 0.55 0.76 0.81 0.90
ROS_R 0.41 0.62 0.72 0.82 0.67 0.83 0.89 0.92
RUS_R 0.32 0.45 0.56 0.71 0.69 0.85 0.91 0.95
ROS_L 0.22 0.39 0.52 0.68 0.65 0.84 0.90 0.95
RUS_L 0.15 0.37 0.50 0.66 0.65 0.86 0.91 0.95
SMOTE_L 0.13 0.35 0.47 0.63 0.67 0.84 0.90 0.95
OSS_L 0.32 0.53 0.61 0.72 0.69 0.84 0.90 0.95
ROS_R_2X 0.47 0.67 0.76 0.85 0.67 0.83 0.89 0.93
ROS_R_4X 0.45 0.66 0.75 0.85 0.64 0.86 0.91 0.94

The hit ratio of various data sampling approaches in
LineV ul + BigV ul and Reveal + BigV ul are shown in
TableVI. In Reveal + BigV ul, all studied data sampling

7



approaches improve hit ratio compared with NoSampling. In
LineV ul + BigV ul, only ROS_R improves the hit ratio. A
possible explanation is that LineVul does not learn well on
BigVul on imbalanced data, and only ROS_R helps handle
data imbalance (see the effectiveness of LineVul on BigVul
in Table V). Nevertheless, ROS_R improves the NoSampling
on both two instances. For instance, after ROS_R, the hit
ratio in LineV ul + BigV ul increases from 0.39, 0.55, 0.66,
and 0.66 to 0.41 0.62, 0.72, and 0.82 when k equals to
1, 3, 5, and 10 with improvements of 5.6%, 12.7%, 9.1%,
and 24.2%, respectively. Similarly, ROS_R improves the hit
ratio in Reveal + BigV ul by 21.8%, 8.6%, 9.4%, and 2.4%
when k equals to 1, 3, 5, and 10, respectively. Such results
suggest that ROS_R helps LineVul and Reveal learn better
about the characteristics of vulnerable patterns. For example,
Figure 2 presents the LIME result of a vulnerable function
before and after ROS_R. The function has a Use-after-free
vulnerability at lines marked with green rectangle [43]. Before
ROS_R, LineVul predicts it as non-vulnerable according to the
statement highlighted in blue, while after ROS_R, LineVul is
able to predict correctly and really based on the vulnerable
lines highlighted in orange. The observation probably indicates
that duplicated data points in the raw training dataset are
not necessarily noisy to the model, they could provide
a positive influence on the model for learning the real
patterns for detecting vulnerabilities when added properly.
To validate this assumption, we increase the ratio of vulnerable
and non-vulnerable cases (RatioV ul) from 1:1 to 2:1, and
4:1 using ROS_R and compare their hit ratio. The results are
presented in Table VI for different RatioV ul, i.e., ROS_R for
1:1, ROS_R_2X for 2:1 and ROS_R_4X for 4:1. We can see
that the hit ratio for top 1 increases from 0.41 to 0.47 when
RatioV ul increases from 1 to 2, and slightly drops when the
RatioV ul reaches 4 (0.45) for LineVul. Meanwhile the effec-
tiveness of LineVul and Reveal increases after increasing the
repetition as well, i.e., F1 values for LineVul are 0.406, 0.42,
and 0.42 after applying ROS_R, ROS_R_2X, and ROS_R_4X,
respectively. We observe a similar phenomenon for the Reveal.

We further perform additional analysis to understand the
impact of ROS_R with different multiplications (i.e., 2x and
4x) of vulnerable cases on model LineVul for dataset BigVul
(LineVul+BigVul) in terms of effectiveness. The results show
that the F1 scores are 0.406 (ROS_R) to 0.420 (ROS_R_2x),
and 0.418 (ROS_R_4x), respectively. We observe the same
trend for AUC. The Top1 hit ratios arrive the best value at
2x and slightly drop afterward. Too many multiplications of
vulnerable cases could bias the classification and decrease the
effectiveness of the model. The results suggest that ROS_R_-
2x works best for the LineVul+BigVul instance. The result
indicates that increasing the size of repeated vulnerable cases
properly could both improve the effectiveness and its ability
of learning vulnerable patterns.�
�

�
�Finding6: ROS_R improves the ability of DLVD ap-

proaches for learning real vulnerable patterns.

Although our results show that ROS_R can improve the abil-
ity of DLDV for capturing vulnerable patterns and predicting
based on them. It still has potential for future improvement
even after applying data sampling. If we look at the top1
results, the hit ratios are 0.39 and 0.55 for LineV ul+BigV ul
and Reveal + BigV ul, respectively. Even after applying
RUS_R, hit ratios are improved to 0.42 and 0.67. There are
still a significant number of cases in which the decision is not
really made based on the vulnerable statements. 58% and 33%
of the vulnerable functions that are predicted as vulnerable are
not based on their real vulnerable statements for LineVul and
Reveal.�




�

	

Finding7: In a significant portion of cases (at least 33%),
DVLD approach cannot reason their prediction over real
vulnerable statements. There is still room for improving
the ability of learning real vulnerable patterns for DLVD
approaches.

V. DISCUSSION

A. Why does ROS_R perform the best among all studied
approaches?

In RQ1, we observe that ROS_R performs the best among
all studied approaches in all studied metrics across exper-
imental instances, typically for imbalanced datasets. Why
is RQS_R the king? To some extent, the results in RQ2
provide insights, i.e., ROS_R improves the ability of DLVD
approaches for learning real vulnerable patterns. We speculate
ROS_R performs the best due to its natural compared with
other approaches. First, compared with undersampling (i.e.,
RUS_R), instead of deleting non-vulnerable code from the
training data which causes information loss, ROS_R, as an
oversampling approach does not have this issue. Second,
compared with other sampling approaches on latent space,
ROS_R performs sampling on raw data. We speculate that
sampling_R separates vulnerable cases from non-vulnerable
cases better than sampling_L. For example, to illustrate the
effect of ROS_L and ROS_R on the data distribution in latent
space, we used the t-distributed stochastic neighbor embedding
(t-SNE) [44] to visualize the distribution of the data points
when using ROS_L and using ROS_R in LineV ul+BigV ul,
in which the F1 value for ROS_R and ROS_L are 0.406 and
0.121, respectively. Figure 3 presents the distribution of data
points after applying ROS_R and ROS_L. Vulnerable and non-
vulnerable data is better separated when applying ROS_R than
applying ROS_L.

B. Why does random undersampling boost recall?

Recall measures how well a DLVD approach could identify
all vulnerable code. Prior studies report that there is a signifi-
cant portion of similar code in code corpus [45]–[47]. There-
fore, we assume there probably exists a significant number
of similar non-vulnerable cases surrounding vulnerable cases
and introduce significant noise for models to identify various
vulnerable code. Random undersampling reduces such noise,

8



Fig. 2: The explanation of LIME on a vulnerable function, which is predicted wrongly as non-vulnerable before ROS (left)
and predicted correctly after ROS_R (right).

Fig. 3: The distribution of data points in the experiment in-
stance LineV ul+BigV ul after applying ROS_R and ROS_L.

Fig. 4: The distribution of data points in the Reveal dataset
without (NoSampling) and without applying RUS_R.

therefore boosts recall, although it reduces precision due to
information loss.

To validate our assumption, we conduct a case study on
the experimental instances for the Reveal model. We applied
t-SNE on the representation vectors generated by the Reveal
model and visualize the distribution of points before and after
RUS_R which performs the best. To quantitatively validate our
assumption, we also calculated the mean and medium number
of neighbors for each vulnerable point in the generated t-SNE
plot. We consider all non-vulnerable points having a Euclidean
distance less than 4 to a vulnerable point as its neighbor, given
the map size is 400*400. We discuss the threats to validity
caused by the threshold selection (i.e., 4) in Section V-D.

Figure 4 presents data points distribution for Reveal +
Reveal (due to the space limitation we do not show the
plots for another two datasets). We observe that without
applying RUS_R (NoSampling), non-vulnerable points cover
the majority of non-vulnerable points, and vulnerable and non-
vulnerable are almost mixed together. After applying RUS_R,

TABLE VII: Number of neighbors before and after RUS_R in
the experimental instances related to the Reveal model.

Dataset Devign Reveal BigVul
Sampling mean median mean median mean median

NoSampling 6.68 6 38.11 38 41.43 43
RUS_R 5.43 5 3.60 3 2.60 2

better separation between the vulnerable and non-vulnerable
points is observed. Table VII presents the median/mean num-
ber of neighbors for each vulnerable point before and after
RUS_R. On all studied datasets, the mean/median number
is reduced significantly, but the ratio of reduction varies in
different datasets. The mean is reduced from 6.68 to 5.43 on
balanced data (Devign), while on the imbalanced datasets, the
mean is reduced from 38.11 to 3.6 and 41.43 to 2.6 on the
Reveal and BigVul datasets with a reduction of more than
10 times. We observer a correlation between the improvement
of recall and the size of the reduction. The recall achieves
an improvement of 464% and an improvement of 397% on
BigVul and Reveal datasets, respectively, while only obtains
an improvement of 12.4% on Devign. Such results explain to
some extent why the random undersampling can reduce noise
for vulnerable code and thus boost recall.

C. Implications of our findings

We recommend future practitioners to use oversampling
over undersampling, sampling_R over sampling_L, and
typically to use ROS_R to handle data imbalance issue
in DLVD. In RQ1, we observe that generally oversampling
outperforms undersampling, sampling_R outperforms sam-
pling_L. Typically, ROS_R performs the best among all stud-
ied sampling approaches. Moreover, we observe that ROS_R
can improve the ability of learning real vulnerable patterns
in source code for DLVD approaches (both text-based and
graph-based models). Therefore, ROS_R is recommended for
handling data imbalance issue in DLVD.

We do not recommend practitioners to use OSS_L
for imbalanced data in DLVD. In RQ1, we observe that
among all studied sampling approaches, OSS_L is the only
one that does not help improve the effectiveness of DLVD on
imbalanced datasets at all due to its mechanism that cannot
guarantee to really balance the target dataset, typically when
the ratio between vulnerable and non-vulnerable code is large.

9



Therefore, we do not suggest practitioners to use OSS_L on
imbalanced data for training DLVD.n

We recommend future practitioners to use RUS_R if
they wish to improve the recall. In RQ1, we observe that
undersampling approaches, typically RUS_R, can boost the
recall for DLVD approaches. In Section V-B, our analysis
shows that RUS_R reduces the number of surrounding similar
non-vulnerable points for vulnerable points dramatically to
reduce noise. In practice, if practitioners aim to improve the
recall of their approaches, they probably could consider using
RUS_R.

We encourage future research to develop new data
augmentation techniques to improve the ability of DLVD
approaches for learning real vulnerable patterns. In RQ2,
although our results show that ROS_R can improve the ability
of DLDV for learning vulnerable patterns. However, there are
still a significant number of cases (58% and 33% of the vulner-
able functions in LineV ul+BigV ul and Reveal+BigV ul),
in which the decision is not made based on the vulnerable
statements. It still has potential for future improvement even
after applying data sampling. Our findings shed light for
addressing/alleviating this problem. For instance, data aug-
mentation probably is a valuable direction to investigate, as our
results show that the simple repetition strategy (e.g., ROS_R)
is helpful in RQ2.

D. Threats to validity

Internal Validity One threat relates to hyperparameter settings
when training the studied DLVD approaches. As hyperparam-
eter tuning is extremely expensive for our studied approaches
that consist of millions of parameters. We used the recom-
mended parameters from previous studies. In addition, time-
wise evaluation scenarios (use the earlier data for training
and later data for testing) are not considered in this paper,
since the dataset is at the function level, not the commit
level. Note that the results obtained for the studied approaches
(IVDetect, Devign, Reveal, and LineVul) are not exactly the
same as the results reported in the original papers. One
possible explanation is that we ran the experiment 20 times and
take an average, while they report the best one. To migrate the
threat, we reused the implementations published by the authors
and followed the experimental setup of DLVD approaches
specified in their papers. Nevertheless, our goal is not to
compare the effectiveness of those DLVD approaches, instead
we focus on studying the impact of data sampling approaches
on the DLVD approaches. In Section V-B, we selected 4 as the
threshold to calculate the neighbourhood of vulnerable cases,
which may introduce bias to the results. To migrate the threat,
we performed the same experiments using different thresholds
and our finding still hold. Similarly, in RQ2, we selected to
examine the k tokens returned by LIME and GNNExplainer,
different k may lead to different results. To migrate this threat,
we examined different values 1, 3, 5, 10 for k and find the
finding is hold for different k. In addition, recent study LIME
can be too random and may generate inconsistent results of
important tokens [48] and may introduce bias to our study.

We encourage future studies to try more advanced techniques
for the explanation. We published our replication package to
improve the transparency of our work.
External validity Threats to the external validity relate to
the generalizability of our findings. Our findings might not
be generalized to other datasets, DLVD approaches, data
sampling approaches. We encourage future research on more
approaches and datasets.

VI. RELATED WORK

A. Machine learning-based Vulnerability detection

With the rapid development of machine learning and its
successful application in various fields, typically deep learning.
Researchers have started to investigate machine learning and
deep learning-based vulnerability detection methods. Early
research of machine learning-based vulnerability detection ap-
proaches typically requires human-defined features to identify
vulnerability and then use machine learning models to train
on these features [1], [49]. For example, Scandariato et al.
[1] use text mining technology and leverage the frequency of
occurrence of specific terms for vulnerability detection. Unlike
machine learning approaches, deep learning-based methods
usually do not define features in advance, but let the model
extract features for learning by itself through a deeper network.
See Section II-A for more details on the prior DLVD ap-
proaches. Napier et al. found that text-based machine learning
models are not effective in detecting vulnerabilities within or
across projects and vulnerability types [50]. Different from
prior studies which focus on improving the effectiveness of
ML-based VD approaches, we investigated the impact of
various data sampling approaches on DLVD approaches on
an extensive scale. We also investigate the reason behind
our findings and provide actionable suggestions for future
practitioners and researchers.

B. Data sampling for software engineering tasks

Data sampling have been used for handling data imbalanced
issue in various software engineering tasks, such as defect pre-
diction [6], [7], [38], [40], [51]–[55], bug classification [54],
[56], software quality prediction [8], and software change
prediction [9]. Most studies show data sampling help improve
of the given tasks [6], [7], [53]–[55], [57], which similar to our
findings. For instance, Yedida and Menzies examined the value
of oversampling for deep learning in defect prediction using
deep learning [55] and show that oversampling (fuzz sampling)
can significantly improve the prior SOTA DL approaches in
the majority defect dataset. Similar finding is observed in our
study, oversampling can improve SOTA DLVD. Zheng et al.
conducted a comparative Study of class rebalancing methods
for security bug report classification [54]. They evaluated
various sampling approaches (e.g., SMOTE, ADASYN, and
Rose) on multiple classifiers (e.g., logistic regression and
random forest) and found that the combination of Rose +
random forest performs the best. Kamei et al. compare under-
sampling and oversampling in the task of fault-prone module
detection and found that undersampling and oversampling

10



have similar effectiveness [57], while our findings suggest that
oversampling is better than undersampling in DLVD. More
important, different from prior studies, we focus on a new task
– DLVD. We also compare two sampling strategies - latent
space sampling vs. raw data sampling, and study whether data
sampling could improve the ability of DLVD for capturing real
vulnerable patterns.

VII. CONCLUSION

We conducted the first systematic and extensive study to
assess the impact of data sampling on data imbalance issue
in SOTA DLVD approaches. Generally, oversampling outper-
forms undersampling, and sampling on raw data outperforms
sampling on latent space, typically random oversampling on
raw data performs the best among all studied ones (including
advanced one SMOTE and OSS). Surprisingly, OSS does not
help alleviate the data imbalance issue in DLVD at all. While
if recall is pursued, random undersampling is the best choice.
Random oversampling on raw data also improves the ability
of DLVD approaches for learning real vulnerable patterns.
However, for a significant portion of cases (at least 33% in
our datasets), DLVD approaches cannot reason their prediction
based on real vulnerable statements. We provide actionable
suggestions and a roadmap to practitioners and researchers,
e.g., random oversampling is recommended to handle data
imbalance issue in DLVD while OSS is not recommended.

REFERENCES

[1] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[2] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability de-
tection,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, 2018.

[3] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[4] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level
vulnerability detection using graph neural networks,” in IEEE/ACM 19th
International Conference on Mining Software Repositories, MSR 2022,
Pittsburgh, PA, USA, May 23-24, 2022, 2022, pp. 596–607.

[5] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[6] L. Pelayo and S. Dick, “Evaluating stratification alternatives to improve
software defect prediction,” IEEE transactions on reliability, vol. 61,
no. 2, pp. 516–525, 2012.

[7] H. Xu, R. Duan, S. Yang, and L. Guo, “An empirical study on data
sampling for just-in-time defect prediction,” in International Conference
on Artificial Intelligence and Security. Springer, 2021, pp. 54–69.

[8] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving software-
quality predictions with data sampling and boosting,” IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1283–1294, 2009.

[9] R. Malhotra and M. Khanna, “An empirical study for software change
prediction using imbalanced data,” Empirical Software Engineering,
vol. 22, no. 6, pp. 2806–2851, 2017.

[10] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” CoRR, vol.
abs/1106.1813, 2011. [Online]. Available: http://arxiv.org/abs/1106.1813

[11] M. Kubat, S. Matwin et al., “Addressing the curse of imbalanced training
sets: one-sided selection,” in Icml, vol. 97, no. 1. Citeseer, 1997, p.
179.

[12] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[13] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” 2022.

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[15] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnex-
plainer: Generating explanations for graph neural networks,” Advances
in neural information processing systems, vol. 32, 2019.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” Proceedings of Workshop at
ICLR, vol. 2013, 01 2013.

[17] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[18] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[19] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[21] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 590–604.

[22] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE international conference on machine learning and applications
(ICMLA). IEEE, 2018, pp. 757–762.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[24] I. Tomek, “Two Modifications of CNN,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 7(2), pp. 679–772, 1976.

[25] C. X. Ling and C. Li, “Data mining for direct marketing: Problems and
solutions.” in Kdd, vol. 98, 1998, pp. 73–79.

[26] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[27] D. M. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” arXiv preprint
arXiv:2010.16061, 2020.

[28] G. K. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei, and A. E. Hassan,
“The impact of feature importance methods on the interpretation of
defect classifiers,” IEEE Transactions on Software Engineering, 2021.

[29] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “Impact
of discretization noise of the dependent variable on machine learning
classifiers in software engineering,” IEEE Transactions on Software
Engineering, vol. 47, no. 7, pp. 1414–1430, 2019.

[30] T.-D. B. Le, D. Lo, and M. Li, “Constrained feature selection for
localizing faults,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 501–505.

[31] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering, vol. 19, no. 1, pp. 154–181,
2014.

[32] N. Chen, S. C. Hoi, and X. Xiao, “Software process evaluation: A
machine learning approach,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE,
2011, pp. 333–342.

[33] W. Fu, V. Nair, and T. Menzies, “Why is differential evolution bet-
ter than grid search for tuning defect predictors?” arXiv preprint
arXiv:1609.02613, 2016.

[34] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
Hassan, “Finding a needle in a haystack: Automated mining of silent

11

http://arxiv.org/abs/1106.1813


vulnerability fixes,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 705–716.

[35] D. Zou, Y. Zhu, S. Xu, Z. Li, H. Jin, and H. Ye, “Interpreting
deep learning-based vulnerability detector predictions based on heuristic
searching,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 30, no. 2, pp. 1–31, 2021.

[36] https://docs.alliancecan.ca/wiki/Narval/en/.
[37] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,

L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[38] K. E. Bennin, J. Keung, A. Monden, P. Phannachitta, and S. Mensah,
“The significant effects of data sampling approaches on software defect
prioritization and classification,” in 2017 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
IEEE, 2017, pp. 364–373.

[39] L. Gong, S. Jiang, and L. Jiang, “Tackling class imbalance problem
in software defect prediction through cluster-based over-sampling with
filtering,” IEEE Access, vol. 7, pp. 145 725–145 737, 2019.

[40] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
“Mahakil: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,” IEEE Transactions on
Software Engineering, vol. 44, no. 6, pp. 534–550, 2017.

[41] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The impact of
class rebalancing techniques on the performance and interpretation of
defect prediction models,” IEEE Transactions on Software Engineering,
vol. 46, no. 11, pp. 1200–1219, 2018.

[42] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE trans-
actions on information theory, vol. 14, no. 3, pp. 515–516, 1968.

[43] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6766.
[44] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal

of machine learning research, vol. 9, no. 11, 2008.
[45] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[46] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[47] M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some
from there: Cross-project code reuse in github,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 291–301.

[48] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thong-
tanunam, “Pyexplainer: Explaining the predictions of just-in-time defect
models,” in 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2021, pp. 407–418.

[49] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 383–392.
[Online]. Available: https://doi.org/10.1145/1595696.1595767

[50] N. Kollin, B. Tanmay, and W. Shaowei, “An empirical study of text-
based machine learning models for vulnerability detection,” Empirical
Software Engineering, 2022.

[51] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 99–108.

[52] K. E. Bennin, J. W. Keung, and A. Monden, “On the relative value of
data resampling approaches for software defect prediction,” Empirical
Software Engineering, vol. 24, no. 2, pp. 602–636, 2019.

[53] S. Feng, J. Keung, X. Yu, Y. Xiao, K. E. Bennin, M. A. Kabir,
and M. Zhang, “Coste: Complexity-based oversampling technique to
alleviate the class imbalance problem in software defect prediction,”
Information and Software Technology, vol. 129, p. 106432, 2021.

[54] W. Zheng, Y. Xun, X. Wu, Z. Deng, X. Chen, and Y. Sui, “A comparative
study of class rebalancing methods for security bug report classification,”
IEEE Transactions on Reliability, vol. 70, no. 4, pp. 1658–1670, 2021.

[55] R. Yedida and T. Menzies, “On the value of oversampling for deep
learning in software defect prediction,” IEEE Transactions on Software
Engineering, 2021.

[56] R. Shu, T. Xia, J. Chen, L. Williams, and T. Menzies, “How to better dis-
tinguish security bug reports (using dual hyperparameter optimization),”
Empirical Software Engineering, vol. 26, no. 3, pp. 1–37, 2021.

[57] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone module
detection,” in First international symposium on empirical software
engineering and measurement (ESEM 2007). IEEE, 2007, pp. 196–
204.

12

https://docs.alliancecan.ca/wiki/Narval/en/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6766
https://doi.org/10.1145/1595696.1595767

	Introduction
	Background
	Overview of deep learning-based vulnerability detection
	Existing DL-based vulnerability detection approaches
	Data sampling

	Experimental design
	Research questions
	Datasets
	Studied DLVD & Data sampling approaches
	Evaluation metrics
	Approach of RQs
	Approach of RQ1
	Approach of RQ2

	Implementation details

	Results
	RQ1: Does data sampling improve the effectiveness of existing DLVD approaches?
	RQ2: Does data sampling improve the ability of DLVD for learning the vulnerable patterns?

	Discussion
	Why does ROS_R perform the best among all studied approaches?
	Why does random undersampling boost recall?
	Implications of our findings
	Threats to validity

	Related work
	Machine learning-based Vulnerability detection
	Data sampling for software engineering tasks

	Conclusion
	References

